R<sup>2</sup>FA-Det: Delving into High-Quality Rotatable Boxes for Ship Detection in SAR Images

Recently, convolutional neural network (CNN)-based methods have been extensively explored for ship detection in synthetic aperture radar (SAR) images due to their powerful feature representation abilities. However, there are still several obstacles hindering the development. First, ships appear in v...

Full description

Bibliographic Details
Main Authors: Shiqi Chen, Jun Zhang, Ronghui Zhan
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/12/2031
Description
Summary:Recently, convolutional neural network (CNN)-based methods have been extensively explored for ship detection in synthetic aperture radar (SAR) images due to their powerful feature representation abilities. However, there are still several obstacles hindering the development. First, ships appear in various scenarios, which makes it difficult to exclude the disruption of the cluttered background. Second, it becomes more complicated to precisely locate the targets with large aspect ratios, arbitrary orientations and dense distributions. Third, the trade-off between accurate localization and improved detection efficiency needs to be considered. To address these issues, this paper presents a rotate refined feature alignment detector (R<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>FA-Det), which ingeniously balances the quality of bounding box prediction and the high speed of the single-stage framework. Specifically, first, we devise a lightweight non-local attention module and embed it into the stem network. The recalibration of features not only strengthens the object-related features yet adequately suppresses the background interference. In addition, both forms of anchors are integrated into our modified anchor mechanism and thus can enable better representation of densely arranged targets with less computation burden. Furthermore, considering the shortcoming of the feature misalignment existing in the cascaded refinement scheme, a feature-guided alignment module which encodes both the position and shape information of current refined anchors into the feature points is adopted. Extensive experimental validations on two SAR ship datasets are performed and the results demonstrate that our algorithm has higher accuracy with faster speed than some state-of-the-art methods.
ISSN:2072-4292