Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.).

Magnesium-protoporphyrin IX monomethyl ester cyclase (MPEC) catalyzes the conversion of MPME to divinyl protochlorophyllide (DVpchlide). This is an essential enzyme during chlorophyll (Chl) biosynthesis but details of its function in rice are still lacking. Here, we identified a novel rice mutant ye...

Full description

Bibliographic Details
Main Authors: Zhonghua Sheng, Yusong Lv, Wei Li, Rongjian Luo, Xiangjin Wei, Lihong Xie, Guiai Jiao, Gaoneng Shao, Jianlong Wang, Shaoqing Tang, Peisong Hu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5448749?pdf=render
Description
Summary:Magnesium-protoporphyrin IX monomethyl ester cyclase (MPEC) catalyzes the conversion of MPME to divinyl protochlorophyllide (DVpchlide). This is an essential enzyme during chlorophyll (Chl) biosynthesis but details of its function in rice are still lacking. Here, we identified a novel rice mutant yellow-leaf 1 (yl-1), which showed decreased Chl accumulation, abnormal chloroplast ultrastructure and attenuated photosynthetic activity. Map-based cloning and over-expression analysis suggested that YL-1 encodes a subunit of MPEC. The YL-1 protein localizes in chloroplasts, and it is mainly expressed in green tissues, with greatest abundance in leaves and young panicles. Results of qRT-PCR showed that Chl biosynthesis upstream genes were highly expressed in the yl-1 mutant, while downstream genes were compromised, indicating that YL-1 plays a pivotal role in the Chl biosynthesis. Furthermore, the expression levels of photosynthesis and chloroplast development genes were also affected. RNA-seq results futher proved that numerous membrane-associated genes, including many plastid membrane-associated genes, have altered expression pattern in the yl-1 mutant, implying that YL-1 is required for plastid membrane stability. Thus, our study confirms a putative MPME cyclase as a novel key enzyme essential for Chl biosynthesis and chloroplast membrane stability in rice.
ISSN:1932-6203