Experimental Verification of CFD Simulation When Evaluating the Operative Temperature and Mean Radiation Temperature for Radiator Heating and Floor Heating

The assessment of heating systems is not only interested in the efficiency of the heating system itself, but also in the quality of the environment that the heating system creates. The quality of the environment and the heat-humidity microclimate is closely related to thermal comfort. A suitable env...

Full description

Bibliographic Details
Main Authors: Pavol Mičko, Andrej Kapjor, Michal Holubčík, Dávid Hečko
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/6/1041
Description
Summary:The assessment of heating systems is not only interested in the efficiency of the heating system itself, but also in the quality of the environment that the heating system creates. The quality of the environment and the heat-humidity microclimate is closely related to thermal comfort. A suitable environment has a positive effect, for example, on the efficiency of work at the workplace. The range of temperatures, humidity and operating temperatures in workplaces is often also legally prescribed in such a way that there is no thermal discomfort for users in the heated space. In terms of savings, it is therefore best to use heating systems that can create a comfortable environment with the lowest possible energy costs. During their development, variations are possible with temperature gradients, the size of the heat exchange area, or the ratio of the radiant and convective components of heat transfer. When developing such systems, it is appropriate to consider CFD simulations. The comparison of the results of CFD simulation and experimental measurement is also in the following article, where the comparison of the operating temperature and the mean radiation temperature of two different heating systems in the model office is monitored.
ISSN:2227-9717