Patient treatment prediction by continuous time random walk inside complex system

Stochastic resonance model for medical patient condition is proposed. Approach has been generalized by means of fractional Fokker-Planck equation and subdiffusion processes. Nonadditive entropy method has been used to achieve nonlinear fractional Fokker-Planck equation. We proved that duration of an...

Full description

Bibliographic Details
Main Author: Walczak Andrzej
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201821002006
Description
Summary:Stochastic resonance model for medical patient condition is proposed. Approach has been generalized by means of fractional Fokker-Planck equation and subdiffusion processes. Nonadditive entropy method has been used to achieve nonlinear fractional Fokker-Planck equation. We proved that duration of an unchanged patient situation can be estimated and fulfills rules for “fat tail” probability distribution. We also proved that probability of patient staying in an unchanged condition behaves the same. Formal rules were built on concept of similarity between real patient condition and potential well model. Such approach is new and allows new results as alternative for discrete models of prediction. Obtained results get probability for patient health parameter behavior in really detailed way.
ISSN:2261-236X