X-ray Properties of 3C 111: Separation of Primary Nuclear Emission and Jet Continuum

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off...

Full description

Bibliographic Details
Main Authors: Elena Fedorova, B.I. Hnatyk, V.I. Zhdanov, A. Del Popolo
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/6/11/219
Description
Summary:3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.
ISSN:2218-1997