Summary: | Intensively managed forest plantations often require fertilization to maintain site fertility and to improve growth and yield over successive rotations. We applied urea-based “enhanced-efficiency fertilizers” (EEF) containing 0.5 atom% <sup>15</sup>N at a rate of 224 kg N ha<sup>−1</sup> to soils under mid-rotation black walnut (<i>Juglans nigra</i> L.) plantations to track the fate of applied <sup>15</sup>N within aboveground ecosystem components during the 12-month period after application. Treatments included Agrotain Ultra (urea coated with a urease inhibitor), Arborite EC (urea coated with water-soluble boron and phosphate), Agrium ESN (polymer-coated urea), uncoated urea, and an unfertilized control. Agrotain Ultra and Arborite EC increased N concentrations of competing vegetation within one month after fertilization, while neither Agrium ESN nor uncoated urea had any effect on competing vegetation N concentrations during the experiment. Agrotain Ultra and Arborite EC increased δ<sup>15</sup>N values in leaves of crop trees above those of controls at one and two months after fertilization, respectively. By contrast, Agrium ESN and uncoated urea had no effect on δ<sup>15</sup>N values in leaves of crop trees until three months after fertilization. Fertilizer N recovery (FNR) varied among ecosystem components, with competing vegetation acting as a sink for applied nutrients. There were no significant differences in FNR for all the urea-based EEF products compared to uncoated urea. Agrium ESN was the only EEF that exhibited controlled-release activity in this study, with other fertilizers behaving similarly to uncoated urea.
|