Embedding theorems for variable exponent fractional Sobolev spaces and an application
$ (-\varDelta)_{p(\cdot)}^{s(\cdot)}u+V(x)|u|^{p(x)-2}u = f(x,u)+g(x) $ where $ x\in\Omega\subset \mathbb{R}^n $, $ (-\varDelta)_{p(\cdot)}^{s(\cdot)} $ is $ s(x) $-$ p(x) $-Laplacian operator with $ 0 < s(x) < 1 < p(x) < \infty $ and $ p(x)s(x) < n $, the non...
Main Authors: | Haikun Liu, Yongqiang Fu |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-06-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://aimspress.com/article/doi/10.3934/math.2021571?viewType=HTML |
Similar Items
-
Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians
by: Uriel Kaufmann, et al.
Published: (2017-11-01) -
On the variable exponential fractional Sobolev space <em>W</em><sup><em>s</em>(·),<em>p</em>(·)</sup>
by: Haikun Liu, et al.
Published: (2020-08-01) -
Second-order boundary-value problems with variable exponents
by: Giuseppina D'Agui
Published: (2014-03-01) -
Non-homogeneous problem for fractional Laplacian involving critical Sobolev exponent
by: Kun Cheng, et al.
Published: (2017-12-01) -
Multiple solutions for a fractional Laplacian system involving critical Sobolev-Hardy exponents and homogeneous term
by: Jinguo Zhang, et al.
Published: (2020-01-01)