Spinodal instability growth in new stochastic approaches

Are spinodal instabilities the leading mechanism in the fragmentation of a fermionic system? Numerous experimental indications suggest such a scenario and stimulated much effort in giving a suitable description, without being finalised in a dedicated transport model. On the one hand, the bulk charac...

Full description

Bibliographic Details
Main Authors: Napolitani P., Colonna M., de la Mota V.
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20158800003
Description
Summary:Are spinodal instabilities the leading mechanism in the fragmentation of a fermionic system? Numerous experimental indications suggest such a scenario and stimulated much effort in giving a suitable description, without being finalised in a dedicated transport model. On the one hand, the bulk character of spinodal behaviour requires an accurate treatment of the one-body dynamics, in presence of mechanical instabilities. On the other hand, pure mean-field implementations do not apply to situations where instabilities, bifurcations and chaos are present. The evolution of instabilities should be treated in a large-amplitude framework requiring fluctuations of Langevin type. We present new stochastic approaches constructed by requiring a thorough description of the mean-field response in presence of instabilities. Their particular relevance is an improved description of the spinodal fragmentation mechanism at the threshold, where the instability growth is frustrated by the mean-field resilience.
ISSN:2100-014X