The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the g...

Full description

Bibliographic Details
Main Authors: G. E. Nedoluha, M. Kiefer, S. Lossow, R. M. Gomez, N. Kämpfer, M. Lainer, P. Forkman, O. M. Christensen, J. J. Oh, P. Hartogh, J. Anderson, K. Bramstedt, B. M. Dinelli, M. Garcia-Comas, M. Hervig, D. Murtagh, P. Raspollini, W. G. Read, K. Rosenlof, G. P. Stiller, K. A. Walker
Format: Article
Language:English
Published: Copernicus Publications 2017-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/17/14543/2017/acp-17-14543-2017.pdf
id doaj-8628152d10454b2791b688d0f091499d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author G. E. Nedoluha
M. Kiefer
S. Lossow
R. M. Gomez
N. Kämpfer
M. Lainer
P. Forkman
O. M. Christensen
J. J. Oh
P. Hartogh
J. Anderson
K. Bramstedt
B. M. Dinelli
M. Garcia-Comas
M. Hervig
D. Murtagh
P. Raspollini
W. G. Read
K. Rosenlof
G. P. Stiller
K. A. Walker
spellingShingle G. E. Nedoluha
M. Kiefer
S. Lossow
R. M. Gomez
N. Kämpfer
M. Lainer
P. Forkman
O. M. Christensen
J. J. Oh
P. Hartogh
J. Anderson
K. Bramstedt
B. M. Dinelli
M. Garcia-Comas
M. Hervig
D. Murtagh
P. Raspollini
W. G. Read
K. Rosenlof
G. P. Stiller
K. A. Walker
The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
Atmospheric Chemistry and Physics
author_facet G. E. Nedoluha
M. Kiefer
S. Lossow
R. M. Gomez
N. Kämpfer
M. Lainer
P. Forkman
O. M. Christensen
J. J. Oh
P. Hartogh
J. Anderson
K. Bramstedt
B. M. Dinelli
M. Garcia-Comas
M. Hervig
D. Murtagh
P. Raspollini
W. G. Read
K. Rosenlof
G. P. Stiller
K. A. Walker
author_sort G. E. Nedoluha
title The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
title_short The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
title_full The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
title_fullStr The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
title_full_unstemmed The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements
title_sort sparc water vapor assessment ii: intercomparison of satellite and ground-based microwave measurements
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2017-12-01
description As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. <br><br> We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H<sub>2</sub>O and CH<sub>4</sub> entering the stratosphere but, because almost all CH<sub>4</sub> has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H<sub>2</sub>O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H<sub>2</sub>O of 0–1 % yr<sup>−1</sup>. In particular, MLS shows a trend of between 0.5 % yr<sup>−1</sup> and 0.7 % yr<sup>−1</sup> at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr<sup>−1</sup> (at Mauna Loa, Hawaii) and −0.1 % yr<sup>−1</sup> (at Lauder, New Zealand).
url https://www.atmos-chem-phys.net/17/14543/2017/acp-17-14543-2017.pdf
work_keys_str_mv AT genedoluha thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mkiefer thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT slossow thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT rmgomez thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT nkampfer thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mlainer thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT pforkman thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT omchristensen thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT jjoh thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT phartogh thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT janderson thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT kbramstedt thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT bmdinelli thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mgarciacomas thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mhervig thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT dmurtagh thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT praspollini thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT wgread thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT krosenlof thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT gpstiller thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT kawalker thesparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT genedoluha sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mkiefer sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT slossow sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT rmgomez sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT nkampfer sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mlainer sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT pforkman sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT omchristensen sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT jjoh sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT phartogh sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT janderson sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT kbramstedt sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT bmdinelli sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mgarciacomas sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT mhervig sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT dmurtagh sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT praspollini sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT wgread sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT krosenlof sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT gpstiller sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
AT kawalker sparcwatervaporassessmentiiintercomparisonofsatelliteandgroundbasedmicrowavemeasurements
_version_ 1725583207307411456
spelling doaj-8628152d10454b2791b688d0f091499d2020-11-24T23:17:49ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-12-0117145431455810.5194/acp-17-14543-2017The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurementsG. E. Nedoluha0M. Kiefer1S. Lossow2R. M. Gomez3N. Kämpfer4M. Lainer5P. Forkman6O. M. Christensen7J. J. Oh8P. Hartogh9J. Anderson10K. Bramstedt11B. M. Dinelli12M. Garcia-Comas13M. Hervig14D. Murtagh15P. Raspollini16W. G. Read17K. Rosenlof18G. P. Stiller19K. A. Walker20Remote Sensing Division, Naval Research Laboratory, Washington, DC, USAKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyRemote Sensing Division, Naval Research Laboratory, Washington, DC, USAInstitute of Applied Physics, University of Bern, Bern, SwitzerlandInstitute of Applied Physics, University of Bern, Bern, SwitzerlandOnsala Space Observatory, Department of Radio and Space Science, Chalmers University of Technology, Onsala, SwedenOnsala Space Observatory, Department of Radio and Space Science, Chalmers University of Technology, Onsala, SwedenSookmyung Women's University, Seoul, South KoreaMax Planck Institute for Solar System Research, Göttingen, GermanyHampton University, Hampton, Virginia, USAUniversity of Bremen, Institute of Environmental Physics, Bremen, GermanyIstituto di Scienze dell'Atmosfera e del Clima del Consiglio Nazionale delle Ricerche, Bologna, ItalyInstituto de Astrofisica de Andalucia, CSIC, Granada, SpainGATS Inc., Driggs, Idaho, USAOnsala Space Observatory, Department of Radio and Space Science, Chalmers University of Technology, Onsala, SwedenIstituto di Fisica Applicata “Nello Carrara” (IFAC) del Consiglio Nazionale delle Ricerche (CNR), Florence, ItalyJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USAUniversity of Colorado, Atmospheric Chemistry Observations & Modeling Laboratory, Boulder, Colorado, USAKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyUniversity of Toronto, Department of Physics, Toronto, Ontario, CanadaAs part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. <br><br> We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H<sub>2</sub>O and CH<sub>4</sub> entering the stratosphere but, because almost all CH<sub>4</sub> has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H<sub>2</sub>O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H<sub>2</sub>O of 0–1 % yr<sup>−1</sup>. In particular, MLS shows a trend of between 0.5 % yr<sup>−1</sup> and 0.7 % yr<sup>−1</sup> at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr<sup>−1</sup> (at Mauna Loa, Hawaii) and −0.1 % yr<sup>−1</sup> (at Lauder, New Zealand).https://www.atmos-chem-phys.net/17/14543/2017/acp-17-14543-2017.pdf