Development of a Potent Antimicrobial Peptide With Photodynamic Activity

The emergence of antibiotic-resistant bacteria poses a serious challenge to medical practice worldwide. A small peptide with sequence RWRWRW was previously identified as a core antimicrobial peptide with limited antimicrobial spectrum to bacteria, especially Gram-positive bacteria. By conjugating th...

Full description

Bibliographic Details
Main Authors: Di Zhang, Jingyi Chen, Qian Jing, Zheng Chen, Azeem Ullah, Longguang Jiang, Ke Zheng, Cai Yuan, Mingdong Huang
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2021.624465/full
Description
Summary:The emergence of antibiotic-resistant bacteria poses a serious challenge to medical practice worldwide. A small peptide with sequence RWRWRW was previously identified as a core antimicrobial peptide with limited antimicrobial spectrum to bacteria, especially Gram-positive bacteria. By conjugating this peptide and its analogs with lipophilic phthalocyanine (Pc), we identified a new antibiotic peptide [PcG3K5(RW)3]. The peptide demonstrates increased antimicrobial effect to both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In addition, Pc also provides added and potent antimicrobial effect upon red light illumination. The inhibitory efficacy of PcG3K5(RW)3 was increased by ~140-fold to nanomolar range upon illumination. Moreover, PcG3K5(RW)3 was safe for mammalian cell and promoted wound healing in the mouse infection model. Our work provides a new direction to optimize antimicrobial peptides to enhance antimicrobial efficacy.
ISSN:1664-302X