Implementation variations of adiabatic steady PPDF flamelet model in turbulent H2/air non-premixed combustion simulation

Implementation of the adiabatic steady PPDF flamelet model involves a lot of variations including different scalar dissipation rate calculation methods and different mass diffusion models of the opposed jet flame. Four different look-up tables have been generated with the combinations of two differe...

Full description

Bibliographic Details
Main Authors: Qiong Li, Peiyu Zhang, Ying Feng, Peiyong Wang
Format: Article
Language:English
Published: Elsevier 2015-09-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X15300150
Description
Summary:Implementation of the adiabatic steady PPDF flamelet model involves a lot of variations including different scalar dissipation rate calculation methods and different mass diffusion models of the opposed jet flame. Four different look-up tables have been generated with the combinations of two different scalar dissipation rate calculation methods and two different mass diffusion models of the opposed jet flame. Simulation of a turbulent non-premixed H2 jet flame is used to discriminate the accuracy of different implementation methods by comparison with experimental data. It is observed that the turbulent flamelets are very close to their equilibrium states and the simulation result is not sensitive to the choice of dissipation rate calculation method. However, the choice of mass diffusion model has significant influence on the simulation result and excluding the Lewis number effect should be enforced for the opposed jet flame simulation.
ISSN:2214-157X