Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone
Laboratory experiments reproducing earthquake slip in non cohesive fault rocks under fluid pressurised conditions are challenging. Thanks to these experiments, the authors show that earthquake slip occurring in tsunamigenic subduction zone faults is controlled by dilatancy and pressurisation process...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-04-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-22805-w |
Summary: | Laboratory experiments reproducing earthquake slip in non cohesive fault rocks under fluid pressurised conditions are challenging. Thanks to these experiments, the authors show that earthquake slip occurring in tsunamigenic subduction zone faults is controlled by dilatancy and pressurisation processes. |
---|---|
ISSN: | 2041-1723 |