Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites

High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the fle...

Full description

Bibliographic Details
Main Authors: Saleh Zidan, Nikolaos Silikas, Julfikar Haider, Abdulaziz Alhotan, Javad Jahantigh, Julian Yates
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/11/2580
id doaj-8689367feb624647a1f95e722c54edd5
record_format Article
spelling doaj-8689367feb624647a1f95e722c54edd52020-11-25T02:26:46ZengMDPI AGMaterials1996-19442020-06-01132580258010.3390/ma13112580Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA NanocompositesSaleh Zidan0Nikolaos Silikas1Julfikar Haider2Abdulaziz Alhotan3Javad Jahantigh4Julian Yates5Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UKDentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UKDepartment of Engineering, Manchester Metropolitan University, Manchester M1 5GD UKDentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UKDentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UKDentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UKHigh-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the flexural strength of complete removable dentures made of HI heat-polymerised PMMA resin reinforced with zirconia nanoparticles at two different concentrations. The effect of fatigue loading on the flexural strength behaviour of the dentures was also investigated. A total of 30 denture specimens were fabricated from PMMA with different concentrations of zirconia nanoparticles: 0 (control), 3, and 5 wt.%. Ten specimens in each group were divided into two subgroups, with five specimens in each, to conduct both flexural strength and fatigue loading test of each of the subgroups. Fatigue loading was applied on the dentures using a mastication simulator and equivalent flexural strength was calculated with data from bending tests with and without fatigue cyclic loading. One-way analysis of variance (ANOVA) of the test data was conducted with the Bonferroni significant difference post-hoc test at a preset alpha value of 0.05. Paired t-test was employed to identify any difference between the specimens with and without the application of fatigue loading. The fractured surface of the denture specimens was examined with a scanning electron microscope (SEM). The bending tests demonstrated that the mean equivalent flexural strength of reinforced HI PMMA denture specimens with 5 wt.% zirconia nanoparticles increased significantly (134.9 ± 13.9 MPa) compared to the control group (0 wt.%) (106.3 ± 21.3 MPa) without any fatigue loading. The mean strength of the dentures with PMMA +3 wt.% zirconia also increased, but not significantly. Although the mean strength of all specimen groups subjected to fatigue loading slightly decreased compared to that of the specimen groups without any fatigue cyclic loading, this was not statistically significant. Denture specimens made of HI heat-polymerised PMMA reinforced with 5 wt.% zirconia nanoparticles had significantly improved equivalent flexural strength compared to that made of pure PMMA when the specimens were not subjected to any prior fatigue cyclic loading. In addition, the application of fatigue cyclic loading did not significantly improve the equivalent flexural strengths of all denture specimen groups. Within the limitations of this study, it can be concluded that the use of zirconia-impregnated PMMA in the manufacture of dentures does not result in any significant improvement for clinical application.https://www.mdpi.com/1996-1944/13/11/2580denture basehigh-impact PMMAzirconia (ZrO<sub>2</sub>), nanocompositeflexural strengthfatigue loading
collection DOAJ
language English
format Article
sources DOAJ
author Saleh Zidan
Nikolaos Silikas
Julfikar Haider
Abdulaziz Alhotan
Javad Jahantigh
Julian Yates
spellingShingle Saleh Zidan
Nikolaos Silikas
Julfikar Haider
Abdulaziz Alhotan
Javad Jahantigh
Julian Yates
Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
Materials
denture base
high-impact PMMA
zirconia (ZrO<sub>2</sub>), nanocomposite
flexural strength
fatigue loading
author_facet Saleh Zidan
Nikolaos Silikas
Julfikar Haider
Abdulaziz Alhotan
Javad Jahantigh
Julian Yates
author_sort Saleh Zidan
title Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
title_short Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
title_full Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
title_fullStr Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
title_full_unstemmed Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites
title_sort evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated pmma nanocomposites
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2020-06-01
description High-impact (HI) polymethyl methacrylate (PMMA), obtained from modification of conventional PMMA, is commonly used in prosthodontics as a denture base material for improved impact resistance. However, it suffers from poor flexural strength properties. The aim of this study was to investigate the flexural strength of complete removable dentures made of HI heat-polymerised PMMA resin reinforced with zirconia nanoparticles at two different concentrations. The effect of fatigue loading on the flexural strength behaviour of the dentures was also investigated. A total of 30 denture specimens were fabricated from PMMA with different concentrations of zirconia nanoparticles: 0 (control), 3, and 5 wt.%. Ten specimens in each group were divided into two subgroups, with five specimens in each, to conduct both flexural strength and fatigue loading test of each of the subgroups. Fatigue loading was applied on the dentures using a mastication simulator and equivalent flexural strength was calculated with data from bending tests with and without fatigue cyclic loading. One-way analysis of variance (ANOVA) of the test data was conducted with the Bonferroni significant difference post-hoc test at a preset alpha value of 0.05. Paired t-test was employed to identify any difference between the specimens with and without the application of fatigue loading. The fractured surface of the denture specimens was examined with a scanning electron microscope (SEM). The bending tests demonstrated that the mean equivalent flexural strength of reinforced HI PMMA denture specimens with 5 wt.% zirconia nanoparticles increased significantly (134.9 ± 13.9 MPa) compared to the control group (0 wt.%) (106.3 ± 21.3 MPa) without any fatigue loading. The mean strength of the dentures with PMMA +3 wt.% zirconia also increased, but not significantly. Although the mean strength of all specimen groups subjected to fatigue loading slightly decreased compared to that of the specimen groups without any fatigue cyclic loading, this was not statistically significant. Denture specimens made of HI heat-polymerised PMMA reinforced with 5 wt.% zirconia nanoparticles had significantly improved equivalent flexural strength compared to that made of pure PMMA when the specimens were not subjected to any prior fatigue cyclic loading. In addition, the application of fatigue cyclic loading did not significantly improve the equivalent flexural strengths of all denture specimen groups. Within the limitations of this study, it can be concluded that the use of zirconia-impregnated PMMA in the manufacture of dentures does not result in any significant improvement for clinical application.
topic denture base
high-impact PMMA
zirconia (ZrO<sub>2</sub>), nanocomposite
flexural strength
fatigue loading
url https://www.mdpi.com/1996-1944/13/11/2580
work_keys_str_mv AT salehzidan evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
AT nikolaossilikas evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
AT julfikarhaider evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
AT abdulazizalhotan evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
AT javadjahantigh evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
AT julianyates evaluationofequivalentflexuralstrengthforcompleteremovabledenturesmadeofzirconiaimpregnatedpmmananocomposites
_version_ 1724845802721902592