Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial...

Full description

Bibliographic Details
Main Authors: Nicole Toepfner, Christoph Herold, Oliver Otto, Philipp Rosendahl, Angela Jacobi, Martin Kräter, Julia Stächele, Leonhard Menschner, Maik Herbig, Laura Ciuffreda, Lisa Ranford-Cartwright, Michal Grzybek, Ünal Coskun, Elisabeth Reithuber, Geneviève Garriss, Peter Mellroth, Birgitta Henriques-Normark, Nicola Tregay, Meinolf Suttorp, Martin Bornhäuser, Edwin R Chilvers, Reinhard Berner, Jochen Guck
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2018-01-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/29213
id doaj-86b96256276f42619ec6a394f2c8b4ff
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Nicole Toepfner
Christoph Herold
Oliver Otto
Philipp Rosendahl
Angela Jacobi
Martin Kräter
Julia Stächele
Leonhard Menschner
Maik Herbig
Laura Ciuffreda
Lisa Ranford-Cartwright
Michal Grzybek
Ünal Coskun
Elisabeth Reithuber
Geneviève Garriss
Peter Mellroth
Birgitta Henriques-Normark
Nicola Tregay
Meinolf Suttorp
Martin Bornhäuser
Edwin R Chilvers
Reinhard Berner
Jochen Guck
spellingShingle Nicole Toepfner
Christoph Herold
Oliver Otto
Philipp Rosendahl
Angela Jacobi
Martin Kräter
Julia Stächele
Leonhard Menschner
Maik Herbig
Laura Ciuffreda
Lisa Ranford-Cartwright
Michal Grzybek
Ünal Coskun
Elisabeth Reithuber
Geneviève Garriss
Peter Mellroth
Birgitta Henriques-Normark
Nicola Tregay
Meinolf Suttorp
Martin Bornhäuser
Edwin R Chilvers
Reinhard Berner
Jochen Guck
Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
eLife
real-time deformability cytometry
cell mechanics
spherocytosis
malaria
neutrophil activation
leukemia
author_facet Nicole Toepfner
Christoph Herold
Oliver Otto
Philipp Rosendahl
Angela Jacobi
Martin Kräter
Julia Stächele
Leonhard Menschner
Maik Herbig
Laura Ciuffreda
Lisa Ranford-Cartwright
Michal Grzybek
Ünal Coskun
Elisabeth Reithuber
Geneviève Garriss
Peter Mellroth
Birgitta Henriques-Normark
Nicola Tregay
Meinolf Suttorp
Martin Bornhäuser
Edwin R Chilvers
Reinhard Berner
Jochen Guck
author_sort Nicole Toepfner
title Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
title_short Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
title_full Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
title_fullStr Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
title_full_unstemmed Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
title_sort detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2018-01-01
description Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.
topic real-time deformability cytometry
cell mechanics
spherocytosis
malaria
neutrophil activation
leukemia
url https://elifesciences.org/articles/29213
work_keys_str_mv AT nicoletoepfner detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT christophherold detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT oliverotto detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT philipprosendahl detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT angelajacobi detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT martinkrater detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT juliastachele detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT leonhardmenschner detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT maikherbig detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT lauraciuffreda detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT lisaranfordcartwright detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT michalgrzybek detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT unalcoskun detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT elisabethreithuber detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT genevievegarriss detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT petermellroth detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT birgittahenriquesnormark detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT nicolatregay detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT meinolfsuttorp detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT martinbornhauser detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT edwinrchilvers detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT reinhardberner detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
AT jochenguck detectionofhumandiseaseconditionsbysinglecellmorphorheologicalphenotypingofblood
_version_ 1721459917791952896
spelling doaj-86b96256276f42619ec6a394f2c8b4ff2021-05-05T15:30:57ZengeLife Sciences Publications LtdeLife2050-084X2018-01-01710.7554/eLife.29213Detection of human disease conditions by single-cell morpho-rheological phenotyping of bloodNicole Toepfner0Christoph Herold1Oliver Otto2Philipp Rosendahl3https://orcid.org/0000-0002-9545-5045Angela Jacobi4Martin Kräter5https://orcid.org/0000-0001-7122-7331Julia Stächele6Leonhard Menschner7Maik Herbig8Laura Ciuffreda9Lisa Ranford-Cartwright10Michal Grzybek11Ünal Coskun12https://orcid.org/0000-0003-4375-3144Elisabeth Reithuber13Geneviève Garriss14https://orcid.org/0000-0002-5361-0975Peter Mellroth15Birgitta Henriques-Normark16Nicola Tregay17Meinolf Suttorp18Martin Bornhäuser19Edwin R Chilvers20https://orcid.org/0000-0002-4230-9677Reinhard Berner21Jochen Guck22https://orcid.org/0000-0002-1453-6119Center of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Zellmechanik Dresden GmbH, Dresden, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Zellmechanik Dresden GmbH, Dresden, Germany; ZIK HIKE, Universität Greifswald, Greifswald, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Zellmechanik Dresden GmbH, Dresden, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, GermanyDepartment of Hematology and Oncology, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyDepartment of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyDepartment of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, GermanyInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United KingdomInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United KingdomPaul Langerhans Institute Dresden of the Helmholtz Centre Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, GermanyPaul Langerhans Institute Dresden of the Helmholtz Centre Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, GermanyDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SwedenDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SwedenDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SwedenDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SwedenDepartment of Medicine, University of Cambridge, Cambridge, United KingdomDepartment of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyDepartment of Hematology and Oncology, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyDepartment of Medicine, University of Cambridge, Cambridge, United KingdomDepartment of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, GermanyCenter of Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, GermanyBlood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.https://elifesciences.org/articles/29213real-time deformability cytometrycell mechanicsspherocytosismalarianeutrophil activationleukemia