Simultaneously Enhanced Thermal Conductivity and Dielectric Breakdown Strength in Sandwich AlN/Epoxy Composites

Polymer-based composites with high thermal conductivity and dielectric breakdown strength have gained increasing attention due to their significant application potential in both power electronic devices and power equipment. In this study, we successfully prepared novel sandwich AlN/epoxy composites...

Full description

Bibliographic Details
Main Authors: Zhengdong Wang, Xiaozhuo Wang, Silong Wang, Jieyu He, Tong Zhang, Juan Wang, Guanglei Wu
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/8/1898
Description
Summary:Polymer-based composites with high thermal conductivity and dielectric breakdown strength have gained increasing attention due to their significant application potential in both power electronic devices and power equipment. In this study, we successfully prepared novel sandwich AlN/epoxy composites with various layer thicknesses, showing simultaneously and remarkably enhanced dielectric breakdown strength and thermal conductivity. The most optimized sandwich composite, with an outer layer thickness of 120 μm and an inner layer thickness of 60 μm (abbreviated as 120-60) exhibits a high through-plane thermal conductivity of 0.754 W/(m·K) (4.1 times of epoxy) and has a dielectric breakdown strength of 69.7 kV/mm, 8.1% higher compared to that of epoxy. The sandwich composites also have higher in-plane thermal conductivity (1.88 W/(m·K) for 120-60) based on the novel parallel models. The sandwich composites with desirable thermal and electrical properties are very promising for application in power electronic devices and power equipment.
ISSN:2079-4991