Theoretical Investigations on the Reactivity of Methylidyne Radical toward 2,3,7,8-Tetrachlorodibenzo-p-Dioxin: A DFT and Molecular Dynamics Study

To explore the potential reactivity of the methylidyne radical (CH) toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the reaction mechanism between them has been systematically investigated employing the density functional theory (DFT) and ab initio molecular dynamics simulations. The relevant the...

Full description

Bibliographic Details
Main Authors: Weihua Wang, Wenling Feng, Wenliang Wang, Ping Li
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/10/2685
Description
Summary:To explore the potential reactivity of the methylidyne radical (CH) toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the reaction mechanism between them has been systematically investigated employing the density functional theory (DFT) and ab initio molecular dynamics simulations. The relevant thermodynamic and kinetic parameters in the possible reaction pathways have been discussed as well as the IR spectra and hyperfine coupling constants (hfcc’s) of the major products. Different from the reaction of the CH radical with 2,3,7,8-tetrachlorodibenzofuran, CH radical can attack all the C-C bonds of TCDD to form an initial intermediate barrierlessly via the cycloaddition mechanism. After then, the introduced C-H bond can be further inserted into the C-C bond of TCDD, resulting in the formation of a seven-membered ring structure. The whole reactions are favorable thermodynamically and kinetically. Moreover, the major products have been verified by ab initio molecular dynamics simulations. The distinct IR spectra and hyperfine coupling constants of the major products can provide some help for their experimental detection and identification. In addition, the reactivity of the CH radical toward the F- and Br-substituted TCDDs has also been investigated. Hopefully, the present findings can provide new insights into the reactivity of the CH radical in the transformation of TCDD-like dioxins.
ISSN:1420-3049