Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations

In the domain of nondissipative unitary Hamiltonian dynamics, the well-known Mandelstam&#8722;Tamm&#8722;Messiah time&#8722;energy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi&g...

Full description

Bibliographic Details
Main Author: Gian Paolo Beretta
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/21/7/679
id doaj-87881de7d1524f5fa5739500267bbba9
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Gian Paolo Beretta
spellingShingle Gian Paolo Beretta
Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
Entropy
uncertainty relations
maximum entropy production
steepest-entropy-ascent
quantum thermodynamics
second law of thermodynamics
entropy
nonequilibrium
Massieu
author_facet Gian Paolo Beretta
author_sort Gian Paolo Beretta
title Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
title_short Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
title_full Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
title_fullStr Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
title_full_unstemmed Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations
title_sort time–energy and time–entropy uncertainty relations in nonequilibrium quantum thermodynamics under steepest-entropy-ascent nonlinear master equations
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2019-07-01
description In the domain of nondissipative unitary Hamiltonian dynamics, the well-known Mandelstam&#8722;Tamm&#8722;Messiah time&#8722;energy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> <mo>&#8805;</mo> <mi>ℏ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> provides a general lower bound to the characteristic time <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <mo>=</mo> <msub> <mo>&#916;</mo> <mi>F</mi> </msub> <mo>/</mo> <mrow> <mo>|</mo> <mi mathvariant="normal">d</mi> <mrow> <mo>&#9001;</mo> <mi>F</mi> <mo>&#9002;</mo> </mrow> <mo>/</mo> <mi>d</mi> <mi>t</mi> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> with which the mean value of a generic quantum observable <i>F</i> can change with respect to the width <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>F</mi> </msub> </semantics> </math> </inline-formula> of its uncertainty distribution (square root of <i>F</i> fluctuations). A useful practical consequence is that in unitary dynamics the states with longer lifetimes are those with smaller energy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> </semantics> </math> </inline-formula> (square root of energy fluctuations). Here we show that when unitary evolution is complemented with a steepest-entropy-ascent model of dissipation, the resulting nonlinear master equation entails that these lower bounds get modified and depend also on the entropy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> </semantics> </math> </inline-formula> (square root of entropy fluctuations). For example, we obtain the time&#8722;energy-and&#8722;time&#8722;entropy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> <mo>/</mo> <mi>ℏ</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> <mo>/</mo> <msub> <mi>k</mi> <mstyle displaystyle="false" scriptlevel="2"> <mi mathvariant="normal">B</mi> </mstyle> </msub> <mi>&#964;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula> is a characteristic dissipation time functional that for each given state defines the strength of the nonunitary, steepest-entropy-ascent part of the assumed master equation. For purely dissipative dynamics this reduces to the time&#8722;entropy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> <mo>&#8805;</mo> <msub> <mi>k</mi> <mstyle displaystyle="false" scriptlevel="2"> <mi mathvariant="normal">B</mi> </mstyle> </msub> <mi>&#964;</mi> </mrow> </semantics> </math> </inline-formula>, meaning that the nonequilibrium dissipative states with longer lifetime are those with smaller entropy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> </semantics> </math> </inline-formula>.
topic uncertainty relations
maximum entropy production
steepest-entropy-ascent
quantum thermodynamics
second law of thermodynamics
entropy
nonequilibrium
Massieu
url https://www.mdpi.com/1099-4300/21/7/679
work_keys_str_mv AT gianpaoloberetta timeenergyandtimeentropyuncertaintyrelationsinnonequilibriumquantumthermodynamicsundersteepestentropyascentnonlinearmasterequations
_version_ 1725340152337793024
spelling doaj-87881de7d1524f5fa5739500267bbba92020-11-25T00:27:23ZengMDPI AGEntropy1099-43002019-07-0121767910.3390/e21070679e21070679Time–Energy and Time–Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master EquationsGian Paolo Beretta0Department of Mechanical and Industrial Engineering, Università di Brescia, via Branze 38, 25123 Brescia, ItalyIn the domain of nondissipative unitary Hamiltonian dynamics, the well-known Mandelstam&#8722;Tamm&#8722;Messiah time&#8722;energy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> <mo>&#8805;</mo> <mi>ℏ</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> provides a general lower bound to the characteristic time <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <mo>=</mo> <msub> <mo>&#916;</mo> <mi>F</mi> </msub> <mo>/</mo> <mrow> <mo>|</mo> <mi mathvariant="normal">d</mi> <mrow> <mo>&#9001;</mo> <mi>F</mi> <mo>&#9002;</mo> </mrow> <mo>/</mo> <mi>d</mi> <mi>t</mi> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula> with which the mean value of a generic quantum observable <i>F</i> can change with respect to the width <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>F</mi> </msub> </semantics> </math> </inline-formula> of its uncertainty distribution (square root of <i>F</i> fluctuations). A useful practical consequence is that in unitary dynamics the states with longer lifetimes are those with smaller energy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> </semantics> </math> </inline-formula> (square root of energy fluctuations). Here we show that when unitary evolution is complemented with a steepest-entropy-ascent model of dissipation, the resulting nonlinear master equation entails that these lower bounds get modified and depend also on the entropy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> </semantics> </math> </inline-formula> (square root of entropy fluctuations). For example, we obtain the time&#8722;energy-and&#8722;time&#8722;entropy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>H</mi> </msub> <mo>/</mo> <mi>ℏ</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> <mo>/</mo> <msub> <mi>k</mi> <mstyle displaystyle="false" scriptlevel="2"> <mi mathvariant="normal">B</mi> </mstyle> </msub> <mi>&#964;</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mi>&#964;</mi> </semantics> </math> </inline-formula> is a characteristic dissipation time functional that for each given state defines the strength of the nonunitary, steepest-entropy-ascent part of the assumed master equation. For purely dissipative dynamics this reduces to the time&#8722;entropy uncertainty relation <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#964;</mi> <mi>F</mi> </msub> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> <mo>&#8805;</mo> <msub> <mi>k</mi> <mstyle displaystyle="false" scriptlevel="2"> <mi mathvariant="normal">B</mi> </mstyle> </msub> <mi>&#964;</mi> </mrow> </semantics> </math> </inline-formula>, meaning that the nonequilibrium dissipative states with longer lifetime are those with smaller entropy uncertainty <inline-formula> <math display="inline"> <semantics> <msub> <mo>&#916;</mo> <mi>S</mi> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/1099-4300/21/7/679uncertainty relationsmaximum entropy productionsteepest-entropy-ascentquantum thermodynamicssecond law of thermodynamicsentropynonequilibriumMassieu