Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory and fatal human malignancies. Leucine-rich repeat neuronal protein-1 (LRRN1) plays a crucial role in the development of the nervous system. However, the clinical implications and biological functions of LRRN1 in PDAC remain unclea...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-12-01
|
Series: | Molecular Therapy: Oncolytics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2372770521001236 |
id |
doaj-8789ed02fdf64d6b9733bd2596c7af44 |
---|---|
record_format |
Article |
spelling |
doaj-8789ed02fdf64d6b9733bd2596c7af442021-09-27T04:27:24ZengElsevierMolecular Therapy: Oncolytics2372-77052021-12-01235164Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinomaYalu Zhang0Qiaofei Liu1Sen Yang2Quan Liao3Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, ChinaDepartment of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, ChinaDepartment of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, ChinaDepartment of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China; Corresponding author: Quan Liao, Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China.Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory and fatal human malignancies. Leucine-rich repeat neuronal protein-1 (LRRN1) plays a crucial role in the development of the nervous system. However, the clinical implications and biological functions of LRRN1 in PDAC remain unclear. We found that LRRN1 expression was upregulated in PDAC tissues compared with paracancerous tissues and normal pancreatic tissues through the different public databases, tissue microarray-based immunohistochemistry, and dimethylbenzanthracene-induced PDAC murine model. The expression level of LRRN1 was closely related to the overall survival and disease-free survival of PDAC patients. Cox multivariate analysis indicated that LRRN1 was an independent adverse prognostic factor. The small hairpin RNA (shRNA)-mediated LRRN1 knockdown remarkably restrained the proliferative, migratory, and invasive capacities, as well as promoted cell apoptosis and increased G0/G1 arrest in PDAC cells. The xenograft murine subcutaneous bearing model and metastasis model verified that silencing of LRRN1 effectively dampened tumor growth and metastasis in vivo. Specifically, LRRN1 exerted its biological functions through the HIF-1α/Notch signaling pathway, and LRRN1 knockdown could dampen Jagged 1-mediated Notch pathway activation. Therefore, LRRN1 could serve as the potential therapeutic or prognostic target for PDAC.http://www.sciencedirect.com/science/article/pii/S2372770521001236LRRN1HIF-1αproliferationmigrationinvasionpancreatic ductal adenocarcinoma |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yalu Zhang Qiaofei Liu Sen Yang Quan Liao |
spellingShingle |
Yalu Zhang Qiaofei Liu Sen Yang Quan Liao Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma Molecular Therapy: Oncolytics LRRN1 HIF-1α proliferation migration invasion pancreatic ductal adenocarcinoma |
author_facet |
Yalu Zhang Qiaofei Liu Sen Yang Quan Liao |
author_sort |
Yalu Zhang |
title |
Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma |
title_short |
Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma |
title_full |
Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma |
title_fullStr |
Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma |
title_full_unstemmed |
Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma |
title_sort |
knockdown of lrrn1 inhibits malignant phenotypes through the regulation of hif-1α/notch pathway in pancreatic ductal adenocarcinoma |
publisher |
Elsevier |
series |
Molecular Therapy: Oncolytics |
issn |
2372-7705 |
publishDate |
2021-12-01 |
description |
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory and fatal human malignancies. Leucine-rich repeat neuronal protein-1 (LRRN1) plays a crucial role in the development of the nervous system. However, the clinical implications and biological functions of LRRN1 in PDAC remain unclear. We found that LRRN1 expression was upregulated in PDAC tissues compared with paracancerous tissues and normal pancreatic tissues through the different public databases, tissue microarray-based immunohistochemistry, and dimethylbenzanthracene-induced PDAC murine model. The expression level of LRRN1 was closely related to the overall survival and disease-free survival of PDAC patients. Cox multivariate analysis indicated that LRRN1 was an independent adverse prognostic factor. The small hairpin RNA (shRNA)-mediated LRRN1 knockdown remarkably restrained the proliferative, migratory, and invasive capacities, as well as promoted cell apoptosis and increased G0/G1 arrest in PDAC cells. The xenograft murine subcutaneous bearing model and metastasis model verified that silencing of LRRN1 effectively dampened tumor growth and metastasis in vivo. Specifically, LRRN1 exerted its biological functions through the HIF-1α/Notch signaling pathway, and LRRN1 knockdown could dampen Jagged 1-mediated Notch pathway activation. Therefore, LRRN1 could serve as the potential therapeutic or prognostic target for PDAC. |
topic |
LRRN1 HIF-1α proliferation migration invasion pancreatic ductal adenocarcinoma |
url |
http://www.sciencedirect.com/science/article/pii/S2372770521001236 |
work_keys_str_mv |
AT yaluzhang knockdownoflrrn1inhibitsmalignantphenotypesthroughtheregulationofhif1anotchpathwayinpancreaticductaladenocarcinoma AT qiaofeiliu knockdownoflrrn1inhibitsmalignantphenotypesthroughtheregulationofhif1anotchpathwayinpancreaticductaladenocarcinoma AT senyang knockdownoflrrn1inhibitsmalignantphenotypesthroughtheregulationofhif1anotchpathwayinpancreaticductaladenocarcinoma AT quanliao knockdownoflrrn1inhibitsmalignantphenotypesthroughtheregulationofhif1anotchpathwayinpancreaticductaladenocarcinoma |
_version_ |
1716867225918373888 |