Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups

Pandemic curves, such as COVID-19, often show multiple and unpredictable contamination peaks, often called second, third and fourth waves, which are separated by wide plateaus. Here, by considering the statistical inhomogeneity of age groups, we show a quantitative understanding of the different beh...

Full description

Bibliographic Details
Main Authors: Lode K. J. Vandamme, Paulo R. F. Rocha
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/9/4159
id doaj-878e3006a3c94668a7474ce32163f51c
record_format Article
spelling doaj-878e3006a3c94668a7474ce32163f51c2021-05-31T23:03:58ZengMDPI AGApplied Sciences2076-34172021-05-01114159415910.3390/app11094159Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age GroupsLode K. J. Vandamme0Paulo R. F. Rocha1Faculty of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsCentre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, PortugalPandemic curves, such as COVID-19, often show multiple and unpredictable contamination peaks, often called second, third and fourth waves, which are separated by wide plateaus. Here, by considering the statistical inhomogeneity of age groups, we show a quantitative understanding of the different behaviour rules to flatten a pandemic COVID-19 curve and concomitant multi-peak recurrence. The simulations are based on the Verhulst model with analytical generalized logistic equations for the limited growth. From the log–lin plot, we observe an early exponential growth proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mrow><mi>t</mi><mo>/</mo><msub><mi>τ</mi><mrow><mi>g</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></msub></mrow></msup></mrow></semantics></math></inline-formula>. The first peak is often τ<sub>grow</sub> ≅ 5 <i>d</i>. The exponential growth is followed by a recovery phase with an exponential decay proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>t</mi><mo>/</mo><msub><mi>τ</mi><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>v</mi></mrow></msub></mrow></msup></mrow></semantics></math></inline-formula>. For the characteristic time holds: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mrow><mi>g</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></msub><mo><</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>v</mi></mrow></msub></mrow></semantics></math></inline-formula>. Even with isolation, outbreaks due to returning travellers can result in a recurrence of multi-peaks visible on log–lin scales. The exponential growth for the first wave is faster than for the succeeding waves, with characteristic times, τ of about 10 <i>d</i>. Our analysis ascertains that isolation is an efficient method in preventing contamination and enables an improved strategy for scientists, governments and the general public to timely balance between medical burdens, mental health, socio-economic and educational interests.https://www.mdpi.com/2076-3417/11/9/4159COVID-19pandemicscontamination peakslimited growth modelsVerhulst modellogistic equations
collection DOAJ
language English
format Article
sources DOAJ
author Lode K. J. Vandamme
Paulo R. F. Rocha
spellingShingle Lode K. J. Vandamme
Paulo R. F. Rocha
Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
Applied Sciences
COVID-19
pandemics
contamination peaks
limited growth models
Verhulst model
logistic equations
author_facet Lode K. J. Vandamme
Paulo R. F. Rocha
author_sort Lode K. J. Vandamme
title Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
title_short Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
title_full Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
title_fullStr Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
title_full_unstemmed Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups
title_sort analysis and simulation of epidemic covid-19 curves with the verhulst model applied to statistical inhomogeneous age groups
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-05-01
description Pandemic curves, such as COVID-19, often show multiple and unpredictable contamination peaks, often called second, third and fourth waves, which are separated by wide plateaus. Here, by considering the statistical inhomogeneity of age groups, we show a quantitative understanding of the different behaviour rules to flatten a pandemic COVID-19 curve and concomitant multi-peak recurrence. The simulations are based on the Verhulst model with analytical generalized logistic equations for the limited growth. From the log–lin plot, we observe an early exponential growth proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mrow><mi>t</mi><mo>/</mo><msub><mi>τ</mi><mrow><mi>g</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></msub></mrow></msup></mrow></semantics></math></inline-formula>. The first peak is often τ<sub>grow</sub> ≅ 5 <i>d</i>. The exponential growth is followed by a recovery phase with an exponential decay proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>t</mi><mo>/</mo><msub><mi>τ</mi><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>v</mi></mrow></msub></mrow></msup></mrow></semantics></math></inline-formula>. For the characteristic time holds: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mrow><mi>g</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></msub><mo><</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mrow><mi>r</mi><mi>e</mi><mi>c</mi><mi>o</mi><mi>v</mi></mrow></msub></mrow></semantics></math></inline-formula>. Even with isolation, outbreaks due to returning travellers can result in a recurrence of multi-peaks visible on log–lin scales. The exponential growth for the first wave is faster than for the succeeding waves, with characteristic times, τ of about 10 <i>d</i>. Our analysis ascertains that isolation is an efficient method in preventing contamination and enables an improved strategy for scientists, governments and the general public to timely balance between medical burdens, mental health, socio-economic and educational interests.
topic COVID-19
pandemics
contamination peaks
limited growth models
Verhulst model
logistic equations
url https://www.mdpi.com/2076-3417/11/9/4159
work_keys_str_mv AT lodekjvandamme analysisandsimulationofepidemiccovid19curveswiththeverhulstmodelappliedtostatisticalinhomogeneousagegroups
AT paulorfrocha analysisandsimulationofepidemiccovid19curveswiththeverhulstmodelappliedtostatisticalinhomogeneousagegroups
_version_ 1721418406631047168