Bot Detection on Social Networks Using Persistent Homology

The growth of social media in recent years has contributed to an ever-increasing network of user data in every aspect of life. This volume of generated data is becoming a vital asset for the growth of companies and organizations as a powerful tool to gain insights and make crucial decisions. However...

Full description

Bibliographic Details
Main Authors: Minh Nguyen, Mehmet Aktas, Esra Akbas
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematical and Computational Applications
Subjects:
Online Access:https://www.mdpi.com/2297-8747/25/3/58
Description
Summary:The growth of social media in recent years has contributed to an ever-increasing network of user data in every aspect of life. This volume of generated data is becoming a vital asset for the growth of companies and organizations as a powerful tool to gain insights and make crucial decisions. However, data is not always reliable, since primarily, it can be manipulated and disseminated from unreliable sources. In the field of social network analysis, this problem can be tackled by implementing machine learning models that can learn to classify between humans and bots, which are mostly harmful computer programs exploited to shape public opinions and circulate false information on social media. In this paper, we propose a novel topological feature extraction method for bot detection on social networks. We first create weighted ego networks of each user. We then encode the higher-order topological features of ego networks using persistent homology. Finally, we use these extracted features to train a machine learning model and use that model to classify users as bot vs. human. Our experimental results suggest that using the higher-order topological features coming from persistent homology is promising in bot detection and more effective than using classical graph-theoretic structural features.
ISSN:1300-686X
2297-8747