Evaluation of Structural Stability of Materials through Mechanical Spectroscopy: Four Case Studies

Microstructural stability is one of the utmost important requirements for metallic materials in engineering applications, particularly at high temperatures. The paper shows how Mechanical Spectroscopy (MS) (i.e., damping and dynamic modulus measurements) permits the monitoring of the evolution of la...

Full description

Bibliographic Details
Main Authors: Girolamo Costanza, Roberto Montanari, Maria Richetta, Maria Elisa Tata, Alessandra Varone
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/6/12/306
Description
Summary:Microstructural stability is one of the utmost important requirements for metallic materials in engineering applications, particularly at high temperatures. The paper shows how Mechanical Spectroscopy (MS) (i.e., damping and dynamic modulus measurements) permits the monitoring of the evolution of lattice defects, porosity, and cracks which strongly affect the mechanical behavior of metals and sometimes lead to permanent damage. For this purpose, some applications of the technique to different metals and alloys (AISI 304 stainless steel, PWA 1483 single crystal superalloy, nanostructured FeMo prepared via SPS sintering and tungsten) of engineering interest are presented. These experiments have been carried out in lab conditions using bar-shaped samples at constant or increasing temperatures. The results can be used to orient the interpretation of frequency and damping changes observed through other instruments in components of complex shape during their in-service life.
ISSN:2075-4701