Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity

Because of the implications for plasmas in the laboratory and in space, attention has been drawn to inhomogeneous energy-density driven (IEDD) waves that are sustained by velocity-shear-induced inhomogeneity in cross-field plasma flow. These waves have a frequency <font face='Symbol'...

Full description

Bibliographic Details
Main Authors: J. J. Carroll III, M. E. Koepke, M. W. Zintl, V. Gavrishchaka
Format: Article
Language:English
Published: Copernicus Publications 2003-01-01
Series:Nonlinear Processes in Geophysics
Online Access:http://www.nonlin-processes-geophys.net/10/131/2003/npg-10-131-2003.pdf
id doaj-87e50b63a41140c684ace42011b4e0df
record_format Article
spelling doaj-87e50b63a41140c684ace42011b4e0df2020-11-25T00:52:26ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462003-01-01101/2131138Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocityJ. J. Carroll IIIJ. J. Carroll IIIM. E. KoepkeM. W. ZintlM. W. ZintlV. GavrishchakaBecause of the implications for plasmas in the laboratory and in space, attention has been drawn to inhomogeneous energy-density driven (IEDD) waves that are sustained by velocity-shear-induced inhomogeneity in cross-field plasma flow. These waves have a frequency <font face='Symbol'>v</font><sub>r</sub> in the lab frame within an order of magnitude of the ion gyrofrequency <font face='Symbol'>v</font><sub>ci</sub>, propagate nearly perpendicular to the magnetic field (k<sub>z</sub> /k<font face='Symbol'><sub>^</sub></font> << 1), and can be Landau resonant (0 < <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> < <font face='Symbol'>n</font><sub>d</sub>) with a parallel drifting electron population (drift speed <font face='Symbol'>n</font><sub>d</sub>), where subscripts <i>1</i> and <i>r</i> indicate frequency in the frame of flowing ions and in the lab frame, respectively, and k<sub>z</sub> is the parallel component of the wavevector. A transition in phase velocity from 0 < <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> < <font face='Symbol'>n</font><sub>d</sub> to 0 > <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> > <font face='Symbol'>n</font><sub>d</sub> for a pair of IEDD eigenmodes is observed as the degree of in-homogeneity in the transverse <b><i>E × B</i></b> flow is increased in a magnetized plasma column. For weaker velocity shear, both eigenmodes are dissipative, i.e. in Landau resonance, with k<sub>z</sub> <font face='Symbol'>n</font><sub>d</sub> > 0. For stronger shear, both eigenmodes become reactive, with one's wavevector component k<sub>z</sub> remaining parallel, but with <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> > <font face='Symbol'>n</font><sub>d</sub> , and the other's wavevector component k<sub>z</sub> becoming anti-parallel, so that 0 > <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> . For both eigenmodes, the transition (1) involves a small frequency shift and (2) does not involve a sign change in the wave energy density, which is proportional to <font face='Symbol'>v</font><sub>r</sub> <font face='Symbol'>v</font><sub>1</sub>, both of which are previously unrecognized aspects of inhomogeneous energy-density driven waves.http://www.nonlin-processes-geophys.net/10/131/2003/npg-10-131-2003.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. J. Carroll III
J. J. Carroll III
M. E. Koepke
M. W. Zintl
M. W. Zintl
V. Gavrishchaka
spellingShingle J. J. Carroll III
J. J. Carroll III
M. E. Koepke
M. W. Zintl
M. W. Zintl
V. Gavrishchaka
Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
Nonlinear Processes in Geophysics
author_facet J. J. Carroll III
J. J. Carroll III
M. E. Koepke
M. W. Zintl
M. W. Zintl
V. Gavrishchaka
author_sort J. J. Carroll III
title Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
title_short Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
title_full Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
title_fullStr Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
title_full_unstemmed Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
title_sort resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity
publisher Copernicus Publications
series Nonlinear Processes in Geophysics
issn 1023-5809
1607-7946
publishDate 2003-01-01
description Because of the implications for plasmas in the laboratory and in space, attention has been drawn to inhomogeneous energy-density driven (IEDD) waves that are sustained by velocity-shear-induced inhomogeneity in cross-field plasma flow. These waves have a frequency <font face='Symbol'>v</font><sub>r</sub> in the lab frame within an order of magnitude of the ion gyrofrequency <font face='Symbol'>v</font><sub>ci</sub>, propagate nearly perpendicular to the magnetic field (k<sub>z</sub> /k<font face='Symbol'><sub>^</sub></font> << 1), and can be Landau resonant (0 < <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> < <font face='Symbol'>n</font><sub>d</sub>) with a parallel drifting electron population (drift speed <font face='Symbol'>n</font><sub>d</sub>), where subscripts <i>1</i> and <i>r</i> indicate frequency in the frame of flowing ions and in the lab frame, respectively, and k<sub>z</sub> is the parallel component of the wavevector. A transition in phase velocity from 0 < <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> < <font face='Symbol'>n</font><sub>d</sub> to 0 > <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> > <font face='Symbol'>n</font><sub>d</sub> for a pair of IEDD eigenmodes is observed as the degree of in-homogeneity in the transverse <b><i>E × B</i></b> flow is increased in a magnetized plasma column. For weaker velocity shear, both eigenmodes are dissipative, i.e. in Landau resonance, with k<sub>z</sub> <font face='Symbol'>n</font><sub>d</sub> > 0. For stronger shear, both eigenmodes become reactive, with one's wavevector component k<sub>z</sub> remaining parallel, but with <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> > <font face='Symbol'>n</font><sub>d</sub> , and the other's wavevector component k<sub>z</sub> becoming anti-parallel, so that 0 > <font face='Symbol'>v</font><sub>1</sub>/k<sub>z</sub> . For both eigenmodes, the transition (1) involves a small frequency shift and (2) does not involve a sign change in the wave energy density, which is proportional to <font face='Symbol'>v</font><sub>r</sub> <font face='Symbol'>v</font><sub>1</sub>, both of which are previously unrecognized aspects of inhomogeneous energy-density driven waves.
url http://www.nonlin-processes-geophys.net/10/131/2003/npg-10-131-2003.pdf
work_keys_str_mv AT jjcarrolliii resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
AT jjcarrolliii resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
AT mekoepke resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
AT mwzintl resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
AT mwzintl resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
AT vgavrishchaka resonanttononresonanttransitioninelectrostaticioncyclotronwavephasevelocity
_version_ 1725242363142471680