Genetic and dietary interactions in the regulation of HMG-CoA reductase gene expression.

Inbred strains of mice exhibit large genetic variations in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. A tissue-specific genetic variation between the strains BALB/c and C57BL/6, resulting in about 5-fold higher levels in hepatic reductase activity in strain C57BL/6,...

Full description

Bibliographic Details
Main Authors: JJ Hwa, S Zollman, CH Warden, BA Taylor, PA Edwards, AM Fogelman, AJ Lusis
Format: Article
Language:English
Published: Elsevier 1992-05-01
Series:Journal of Lipid Research
Online Access:http://www.sciencedirect.com/science/article/pii/S002222752041435X
Description
Summary:Inbred strains of mice exhibit large genetic variations in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. A tissue-specific genetic variation between the strains BALB/c and C57BL/6, resulting in about 5-fold higher levels in hepatic reductase activity in strain C57BL/6, was examined in detail. The activity difference between these two strains could be explained entirely by differences in hepatic reductase mRNA levels. In genetic crosses, the variation segregated as a single major Mendelian element. Surprisingly, the mode of inheritance was recessive since F1 mice exhibited the BALB/c levels of enzyme activity. Despite the fact that the rates of hepatic sterol synthesis also differed between the strains by a factor of about five, the altered hepatic reductase expression did not significantly influence plasma lipoprotein levels. The response to a high cholesterol, high fat diet between the strains was remarkably different. Thus, in BALB/c mice, both hepatic reductase activity and mRNA levels were affected only slightly, if at all, by cholesterol feeding, while in strain C57BL/6 mice both were reduced more than 10-fold by cholesterol feeding. Several lines of evidence, including analysis of cis-acting regulatory elements, the nonadditive mode of inheritance, and genetic studies of the HMG-CoA reductase gene locus on mouse chromosome 13, support the possibility that the variation in reductase expression is not due to a mutation of the structural gene but, rather, is determined by a trans-acting factor controlling reductase mRNA levels. The variation provides a striking example, at the molecular level, of the importance of dietary-genetic interactions in the control of cholesterol metabolism.
ISSN:0022-2275