Characterization of virulence properties in the C. parapsilosis sensu lato species.

The C. parapsilosis sensu lato group involves three closely related species, C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis. Although their overall clinical importance is dramatically increasing, there are few studies regarding the virulence properties of the species of the psil...

Full description

Bibliographic Details
Main Authors: Tibor Németh, Adél Tóth, Judit Szenzenstein, Péter Horváth, Joshua D Nosanchuk, Zsuzsanna Grózer, Renáta Tóth, Csaba Papp, Zsuzsanna Hamari, Csaba Vágvölgyi, Attila Gácser
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3706360?pdf=render
Description
Summary:The C. parapsilosis sensu lato group involves three closely related species, C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis. Although their overall clinical importance is dramatically increasing, there are few studies regarding the virulence properties of the species of the psilosis complex. In this study, we tested 63 C. parapsilosis sensu stricto, 12 C. metapsilosis and 18 C. orthopsilosis isolates for the ability to produce extracellular proteases, secrete lipases and form pseudohyphae. Significant differences were noted between species, with the C. metapsilosis strains failing to secrete lipase or to produce pseudohyphae. Nine different clinical isolates each of C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis were co-cultured with immortalized murine or primary human macrophages. C. parapsilosis sensu stricto isolates showed a significantly higher resistance to killing by primary human macrophages compared to C. orthopsilosis and C. metapsilosis isolates. In contrast, the killing of isolates by J774.2 mouse macrophages did not differ significantly between species. However, C. parapsilosis sensu stricto isolates induced the most damage to murine and human macrophages, and C. metapsilosis strains were the least toxic. Furthermore, strains that produced lipase or pseudohyphae were most resistant to macrophage-mediated killing and produced the most cellular damage. Finally, we used 9 isolates of each of the C. parapsilosis sensus lato species to examine their impact on the survival of Galleriamellonella larvae. The mortality rate of G. mellonella larvae infected with C. metapsilosis isolates was significantly lower than those infected with C. parapsilosis sensu stricto or C. orthopsilosis strains. Taken together, our findings demonstrate that C. metapsilosis is indeed the least virulent member of the psilosis group, and also highlight the importance of pseudohyphae and secreted lipases during fungal-host interactions.
ISSN:1932-6203