Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application

Quality control of herbal medicines remain a challenging issue towardsintegrating phytomedicine into the primary health care system. As medicinal plants is acomplicated system of mixtures, a rapid and cost-effective evaluation method tocharacterize the chemical fingerprint of the plant without perfo...

Full description

Bibliographic Details
Main Authors: Ali Yeon Md Shakaff, AKM Shafiqul Islam, Oon–Sim Chew, Zhari Ismail, Mohd Noor Ahmad
Format: Article
Language:English
Published: MDPI AG 2006-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/6/10/1333/
Description
Summary:Quality control of herbal medicines remain a challenging issue towardsintegrating phytomedicine into the primary health care system. As medicinal plants is acomplicated system of mixtures, a rapid and cost-effective evaluation method tocharacterize the chemical fingerprint of the plant without performing laborious samplepreparation procedure is reported. A novel research methodology based on an in-housefabricated multichannel sensor incorporating an array of artificial lipid-polymer membraneas a fingerprinting device for quality evaluation of a highly sought after herbal medicine inthe Asean Region namely Eurycoma longifolia (Tongkat Ali). The sensor array is based onthe principle of the bioelectronic tongue that mimics the human gustatory system throughthe incorporation of artificial lipid material as sensing element. The eight non-specificsensors have partially overlapping selectivity and cross-sensitivity towards the targetedanalyte. Hence, electrical potential response represented by radar plot is used to characterizeextracts from different parts of plant, age, batch-to-batch variation and mode of extraction ofE. longifolia through the obtained potentiometric fingerprint profile. Classification modelwas also developed classifying various E. longifolia extracts with the aid of chemometricpattern recognition tools namely hierarchical cluster analysis (HCA) and principalcomponent analysis (PCA). The sensor seems to be a promising analytical device for qualitycontrol based on potentiometric fingerprint analysis of phytomedicine.
ISSN:1424-8220