Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system

This article is concerned with the model $$\displaylines{ u_t=\Delta u-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\quad x\in \Omega,\; t>0,\cr 0=\Delta v+\alpha u-\beta v,\quad x\in\Omega,\; t>0,\cr 0=\Delta w+\gamma u-\delta w,\quad x\in\Omega,\; t>0 }$$ with homogeneou...

Full description

Bibliographic Details
Main Authors: Yuhuan Li, Ke Lin, Chunlai Mu
Format: Article
Language:English
Published: Texas State University 2015-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/146/abstr.html
Description
Summary:This article is concerned with the model $$\displaylines{ u_t=\Delta u-\nabla\cdot(\chi u\nabla v)+\nabla\cdot(\xi u\nabla w),\quad x\in \Omega,\; t>0,\cr 0=\Delta v+\alpha u-\beta v,\quad x\in\Omega,\; t>0,\cr 0=\Delta w+\gamma u-\delta w,\quad x\in\Omega,\; t>0 }$$ with homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset \mathbb{R}^{n}\;(n=2,3)$. Under the critical condition $\chi \alpha-\xi \gamma=0$, we show that the system possesses a unique global solution that is uniformly bounded in time. Moreover, when $n=2$, by some appropriate smallness conditions on the initial data, we assert that this solution converges to ($\bar{u}_0$, $\frac{\alpha}{\beta}\bar{u}_0$, $\frac{\gamma}{\delta}\bar{u}_0$) exponentially, where $\bar{u}_0:=\frac{1}{|\Omega|}\int_{\Omega}u_0$.
ISSN:1072-6691