Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride

The chemistry of <i>f</i>-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through th...

Full description

Bibliographic Details
Main Authors: Alessandro Cossard, Silvia Casassa, Carlo Gatti, Jacques K. Desmarais, Alessandro Erba
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/14/4227
id doaj-89d8eb8aad8c460591e015db02c3a893
record_format Article
spelling doaj-89d8eb8aad8c460591e015db02c3a8932021-07-23T13:56:30ZengMDPI AGMolecules1420-30492021-07-01264227422710.3390/molecules26144227Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl ChlorideAlessandro Cossard0Silvia Casassa1Carlo Gatti2Jacques K. Desmarais3Alessandro Erba4Dipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, ItalyDipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, ItalyCNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, ItalyDipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, ItalyDipartimento di Chimica, Università di Torino, Via Giuria 5, 10125 Torino, ItalyThe chemistry of <i>f</i>-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the <span style="font-variant: small-caps;">Topond</span> module (previously limited to work in terms of <i>s</i>-, <i>p</i>- and <i>d</i>-type basis functions only) of the <span style="font-variant: small-caps;">Crystal</span> program to <i>f</i>- and <i>g</i>-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>UO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Cl<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.https://www.mdpi.com/1420-3049/26/14/4227chemical bondingactinides<span style="font-variant: small-caps">Topond</span> program
collection DOAJ
language English
format Article
sources DOAJ
author Alessandro Cossard
Silvia Casassa
Carlo Gatti
Jacques K. Desmarais
Alessandro Erba
spellingShingle Alessandro Cossard
Silvia Casassa
Carlo Gatti
Jacques K. Desmarais
Alessandro Erba
Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
Molecules
chemical bonding
actinides
<span style="font-variant: small-caps">Topond</span> program
author_facet Alessandro Cossard
Silvia Casassa
Carlo Gatti
Jacques K. Desmarais
Alessandro Erba
author_sort Alessandro Cossard
title Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
title_short Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
title_full Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
title_fullStr Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
title_full_unstemmed Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on <i>f</i>-Electron Materials: The Case of Cesium Uranyl Chloride
title_sort topology of the electron density and of its laplacian from periodic lcao calculations on <i>f</i>-electron materials: the case of cesium uranyl chloride
publisher MDPI AG
series Molecules
issn 1420-3049
publishDate 2021-07-01
description The chemistry of <i>f</i>-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the <span style="font-variant: small-caps;">Topond</span> module (previously limited to work in terms of <i>s</i>-, <i>p</i>- and <i>d</i>-type basis functions only) of the <span style="font-variant: small-caps;">Crystal</span> program to <i>f</i>- and <i>g</i>-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>UO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Cl<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.
topic chemical bonding
actinides
<span style="font-variant: small-caps">Topond</span> program
url https://www.mdpi.com/1420-3049/26/14/4227
work_keys_str_mv AT alessandrocossard topologyoftheelectrondensityandofitslaplacianfromperiodiclcaocalculationsonifielectronmaterialsthecaseofcesiumuranylchloride
AT silviacasassa topologyoftheelectrondensityandofitslaplacianfromperiodiclcaocalculationsonifielectronmaterialsthecaseofcesiumuranylchloride
AT carlogatti topologyoftheelectrondensityandofitslaplacianfromperiodiclcaocalculationsonifielectronmaterialsthecaseofcesiumuranylchloride
AT jacqueskdesmarais topologyoftheelectrondensityandofitslaplacianfromperiodiclcaocalculationsonifielectronmaterialsthecaseofcesiumuranylchloride
AT alessandroerba topologyoftheelectrondensityandofitslaplacianfromperiodiclcaocalculationsonifielectronmaterialsthecaseofcesiumuranylchloride
_version_ 1721286898773655552