Study on multicellular systems using a phase field model.

A model of multicellular systems with several types of cells is developed from the phase field model. The model is presented as a set of partial differential equations of the field variables, each of which expresses the shape of one cell. The dynamics of each cell is based on the criteria for minimi...

Full description

Bibliographic Details
Main Author: Makiko Nonomura
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3335162?pdf=render
Description
Summary:A model of multicellular systems with several types of cells is developed from the phase field model. The model is presented as a set of partial differential equations of the field variables, each of which expresses the shape of one cell. The dynamics of each cell is based on the criteria for minimizing the surface area and retaining a certain volume. The effects of cell adhesion and excluded volume are also taken into account. The proposed model can be used to find the position of the membrane and/or the cortex of each cell without the need to adopt extra variables. This model is suitable for numerical simulations of a system having a large number of cells. The two-dimensional results of cell division, cell adhesion, rearrangement of a cell cluster, chemotaxis, and cell sorting as well as the three-dimensional results of cell clusters on the substrate are presented.
ISSN:1932-6203