Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?

<p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular st...

Full description

Bibliographic Details
Main Authors: Keller Christina, Groeneveld Linn F, Zinner Dietmar, Roos Christian
Format: Article
Language:English
Published: BMC 2009-04-01
Series:BMC Evolutionary Biology
Online Access:http://www.biomedcentral.com/1471-2148/9/83
id doaj-8b6a9c0cab014eb0931eabba302d3640
record_format Article
spelling doaj-8b6a9c0cab014eb0931eabba302d36402021-09-02T04:18:18ZengBMCBMC Evolutionary Biology1471-21482009-04-01918310.1186/1471-2148-9-83Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?Keller ChristinaGroeneveld Linn FZinner DietmarRoos Christian<p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p> http://www.biomedcentral.com/1471-2148/9/83
collection DOAJ
language English
format Article
sources DOAJ
author Keller Christina
Groeneveld Linn F
Zinner Dietmar
Roos Christian
spellingShingle Keller Christina
Groeneveld Linn F
Zinner Dietmar
Roos Christian
Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
BMC Evolutionary Biology
author_facet Keller Christina
Groeneveld Linn F
Zinner Dietmar
Roos Christian
author_sort Keller Christina
title Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
title_short Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
title_full Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
title_fullStr Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
title_full_unstemmed Mitochondrial phylogeography of baboons (<it>Papio </it>spp.) – Indication for introgressive hybridization?
title_sort mitochondrial phylogeography of baboons (<it>papio </it>spp.) – indication for introgressive hybridization?
publisher BMC
series BMC Evolutionary Biology
issn 1471-2148
publishDate 2009-04-01
description <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p>
url http://www.biomedcentral.com/1471-2148/9/83
work_keys_str_mv AT kellerchristina mitochondrialphylogeographyofbaboonsitpapioitsppindicationforintrogressivehybridization
AT groeneveldlinnf mitochondrialphylogeographyofbaboonsitpapioitsppindicationforintrogressivehybridization
AT zinnerdietmar mitochondrialphylogeographyofbaboonsitpapioitsppindicationforintrogressivehybridization
AT rooschristian mitochondrialphylogeographyofbaboonsitpapioitsppindicationforintrogressivehybridization
_version_ 1721180234112303104