Adaptive Decentralized Control Scheme for a Stochastic Interconnected System

This work investigates a decentralized state feedback scheme of neural network control for an interconnected system. The completely unknown associated terms are estimated directly by the neural structure. A modified approach is proposed to deal with the state feedback format. By combining the Lyapun...

Full description

Bibliographic Details
Main Authors: Xiaoli Jiang, Siqi Liu, Mingyue Liu, Li Yang, Lina Liu
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/6018398
Description
Summary:This work investigates a decentralized state feedback scheme of neural network control for an interconnected system. The completely unknown associated terms are estimated directly by the neural structure. A modified approach is proposed to deal with the state feedback format. By combining the Lyapunov function and backstepping technology together, an adaptive decentralized controller is established, and we can construct the boundedness of all signals in the closed-loop structure through the controller, which can drive the formation of a given reference signal. In the end, the effectiveness of the presented strategy is referred to a simulation example.
ISSN:1076-2787
1099-0526