GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques

Landmine clearance is an ongoing problem that currently affects millions of people around the world. This study evaluates the effectiveness of ground penetrating radar (GPR) in demining and unexploded ordnance detection using 2.3-GHz and 1-GHz high-frequency antennas. An automated detection tool ba...

Full description

Bibliographic Details
Main Authors: Xavier Núñez-Nieto, Mercedes Solla, Paula Gómez-Pérez, Henrique Lorenzo
Format: Article
Language:English
Published: MDPI AG 2014-10-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/6/10/9729
Description
Summary:Landmine clearance is an ongoing problem that currently affects millions of people around the world. This study evaluates the effectiveness of ground penetrating radar (GPR) in demining and unexploded ordnance detection using 2.3-GHz and 1-GHz high-frequency antennas. An automated detection tool based on machine learning techniques is also presented with the aim of automatically detecting underground explosive artifacts. A GPR survey was conducted on a designed scenario that included the most commonly buried items in historic battle fields, such as mines, projectiles and mortar grenades. The buried targets were identified using both frequencies, although the higher vertical resolution provided by the 2.3-GHz antenna allowed for better recognition of the reflection patterns. The targets were also detected automatically using machine learning techniques. Neural networks and logistic regression algorithms were shown to be able to discriminate between potential targets and clutter. The neural network had the most success, with accuracies ranging from 89% to 92% for the 1-GHz and 2.3-GHz antennas, respectively.
ISSN:2072-4292