On the complexity of the balanced vertex ordering problem
We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was r...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2007-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Online Access: | http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/503 |
id |
doaj-8bf40cd79dcf40b5a1dea58929c69228 |
---|---|
record_format |
Article |
spelling |
doaj-8bf40cd79dcf40b5a1dea58929c692282020-11-24T22:10:49ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1462-72641365-80502007-01-0191On the complexity of the balanced vertex ordering problemJan KaraJan KratochvilDavid R. WoodWe consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27--48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an `almost balanced' ordering. http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/503 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jan Kara Jan Kratochvil David R. Wood |
spellingShingle |
Jan Kara Jan Kratochvil David R. Wood On the complexity of the balanced vertex ordering problem Discrete Mathematics & Theoretical Computer Science |
author_facet |
Jan Kara Jan Kratochvil David R. Wood |
author_sort |
Jan Kara |
title |
On the complexity of the balanced vertex ordering problem |
title_short |
On the complexity of the balanced vertex ordering problem |
title_full |
On the complexity of the balanced vertex ordering problem |
title_fullStr |
On the complexity of the balanced vertex ordering problem |
title_full_unstemmed |
On the complexity of the balanced vertex ordering problem |
title_sort |
on the complexity of the balanced vertex ordering problem |
publisher |
Discrete Mathematics & Theoretical Computer Science |
series |
Discrete Mathematics & Theoretical Computer Science |
issn |
1462-7264 1365-8050 |
publishDate |
2007-01-01 |
description |
We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27--48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an `almost balanced' ordering. |
url |
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/503 |
work_keys_str_mv |
AT jankara onthecomplexityofthebalancedvertexorderingproblem AT jankratochvil onthecomplexityofthebalancedvertexorderingproblem AT davidrwood onthecomplexityofthebalancedvertexorderingproblem |
_version_ |
1725806756030840832 |