On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models

This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed...

Full description

Bibliographic Details
Main Authors: J.C. Monge, J.L. Mantari, J. Yarasca, R.A. Arciniega
Format: Article
Language:English
Published: Shahid Chamran University of Ahvaz 2019-10-01
Series:Journal of Applied and Computational Mechanics
Subjects:
Online Access:http://jacm.scu.ac.ir/article_14263_464f93f56f736b678cf0b8c59414f8db.pdf
Description
Summary:This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is subjected to different mechanical loads, specifically: bi-sinusoidal, uniform, patch, hydrostatic pressure and point load. The governing equations are derived from the Principle of Virtual displacement and solved via Navier-Type closed form solutions. The results are compared with results from Layer-wise solutions and different higher order shear deformation theories available. It is shown that refined models with non-polynomial terms are able to accurately predict the through-the-thickness displacement and stress distributions maintaining less computational effort compared to a Layer-wise models.
ISSN:2383-4536
2383-4536