CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and...

Full description

Bibliographic Details
Main Authors: Lizhen Chen, Zhijie Liu, Bing Zhou, Chaoliang Wei, Yu Zhou, Michael G Rosenfeld, Xiang-Dong Fu, Andrew D Chisholm, Yishi Jin
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2016-06-01
Series:eLife
Subjects:
DRG
Online Access:https://elifesciences.org/articles/16072
Description
Summary:Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.
ISSN:2050-084X