Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs

Abstract We evaluated the response of the biomass of aquatic macrophytes under limnological changes after water level fluctuation (WLF) of two tropical reservoirs (R1 and R2), located in northeastern Brazil. Initially we tested the hypothesis that post-WLF limnological conditions and biomass of mac...

Full description

Bibliographic Details
Main Authors: E. G. Moura Júnior, A. Pott, W. Severi, C. S. Zickel
Format: Article
Language:English
Published: Instituto Internacional de Ecologia 2018-03-01
Series:Brazilian Journal of Biology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842018005008103&lng=en&tlng=en
Description
Summary:Abstract We evaluated the response of the biomass of aquatic macrophytes under limnological changes after water level fluctuation (WLF) of two tropical reservoirs (R1 and R2), located in northeastern Brazil. Initially we tested the hypothesis that post-WLF limnological conditions and biomass of macrophytes increase or decrease, depending on the variable or species. We monitored a 4 × 50 m permanent plot, in four expeditions per period (pre- or post-WLF), assessing species biomass and 10 limnological variables. We utilized 0.25 × 0.25 m quadrats for biomass. Once the effect of WLF in limnological variables and species biomass was confirmed, we utilized Canonical Correspondence Analysis to understand the relationship between limnological variables and species biomass. The abundant and/or dominant species in pre-WLF of R1 ( Pistia stratiotes, Eichhornia crassipes and Salvinia auriculata) and R2 (Paspalidium geminatum and S. auriculata) reduced their biomass post-WLF and were correlated with temperature, total phosphorous and nitrate. The reduced biomass of P. stratiotes, E. crassipes and S. auriculata in post-WLF widened resource availability, allowing coexistence of species. Therefore, we suggest that the change of limnological conditions in post-WLF in artificial lakes acts only as a moderator factor of the interspecific interaction (especially coexistence), without direct relation between these conditions and species biomass.
ISSN:1678-4375