Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea

Accounting for more than half of buildings in South Korea, the energy consumed by residential buildings has become a main concern and the cooing demand has rapidly increased. To reduce energy consumption, several passive and active design strategies have generally been applied. However, there has be...

Full description

Bibliographic Details
Main Authors: Taesub Lim, Woong Seog Yim, Daeung Danny Kim
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/18/4749
Description
Summary:Accounting for more than half of buildings in South Korea, the energy consumed by residential buildings has become a main concern and the cooing demand has rapidly increased. To reduce energy consumption, several passive and active design strategies have generally been applied. However, there has been an increasing demand for high window-to-wall ratios in residential buildings, it is imperative to block sunlight into a building effectively. Focusing on the reduction of cooling energy consumption in a residential building, the present study assessed the daylight and energy performance of shading devices. Among various types of shading devices, the Venetian blind, horizontal louver, light shelf, and egg-crate were selected. The illuminance levels in three different areas in a building were measured. In addition, the annual cooling energy consumption by these shading devices was investigated. As a result, both daylight and energy performance varied with different design options of these shading devices. Because of the slight performance difference among shading devices, the artificial loads of two best shading devices were compared. In sum, the egg-crate shading was the most proper shading device to block sunlight as well as reduce the cooling energy consumption effectively.
ISSN:1996-1073