A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties

A novel adsorption model for the description of adsorption isotherms of cobalt nitrate on porphyrins H2TPP and H2TTPP is developed in the present paper. Experimental data were measured at five temperatures using the quartz crystal microbalance technique and were discussed to choose the most reproduc...

Full description

Bibliographic Details
Main Authors: Manel Ben Yahia, Mohamed Ben Yahia
Format: Article
Language:English
Published: AIP Publishing LLC 2020-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0009916
id doaj-8d74a5652ed84f3d9fbd1eb6e1cdbe72
record_format Article
spelling doaj-8d74a5652ed84f3d9fbd1eb6e1cdbe722020-11-25T02:39:17ZengAIP Publishing LLCAIP Advances2158-32262020-05-01105055324055324-1110.1063/5.0009916A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic propertiesManel Ben Yahia0Mohamed Ben Yahia1Physics Department, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, P.O. Box 344, Rabigh 21911, Saudi ArabiaLaboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir 5000, TunisiaA novel adsorption model for the description of adsorption isotherms of cobalt nitrate on porphyrins H2TPP and H2TTPP is developed in the present paper. Experimental data were measured at five temperatures using the quartz crystal microbalance technique and were discussed to choose the most reproductive adsorbent for the achievement of the vitamin B12 nucleus. Then, the modeling treatment was established based on the grand canonical formalism in statistical physics by taking into account the lateral interaction between the adsorbate particles. This leads to a six parameter equation describing the complexation process at the molecular level. Actually, there is a good correlation between experimental data and those calculated by using the double-layer L.B.L. model. It was found that cobalt ions were adsorbed via a multi-docking mechanism onto the two adsorbents. The study of the density of receptor sites (PM) confirmed the endothermic nature of the two complexation processes. The van der Waals parameters indicated that the disturbances following the lateral interactions between the adsorbates are the highest in the case of tetraphenylporphyrin. The magnitude of the calculated adsorption energies reveals that cobalt is physisorbed onto tetraphenylporphyrin, whereas chemical forces were found in the case of porphyrins (H2TTPP). In addition, the proposed model allows the prediction of some adsorption thermodynamic functions, which govern the adsorption mechanism, such as entropy, Gibbs free enthalpy, and internal energy.http://dx.doi.org/10.1063/5.0009916
collection DOAJ
language English
format Article
sources DOAJ
author Manel Ben Yahia
Mohamed Ben Yahia
spellingShingle Manel Ben Yahia
Mohamed Ben Yahia
A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
AIP Advances
author_facet Manel Ben Yahia
Mohamed Ben Yahia
author_sort Manel Ben Yahia
title A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
title_short A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
title_full A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
title_fullStr A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
title_full_unstemmed A novel experimental technique for the fabrication of the vitamin B12 nucleus using quartz crystal microbalance: Statistical physics modeling and new microscopic properties
title_sort novel experimental technique for the fabrication of the vitamin b12 nucleus using quartz crystal microbalance: statistical physics modeling and new microscopic properties
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2020-05-01
description A novel adsorption model for the description of adsorption isotherms of cobalt nitrate on porphyrins H2TPP and H2TTPP is developed in the present paper. Experimental data were measured at five temperatures using the quartz crystal microbalance technique and were discussed to choose the most reproductive adsorbent for the achievement of the vitamin B12 nucleus. Then, the modeling treatment was established based on the grand canonical formalism in statistical physics by taking into account the lateral interaction between the adsorbate particles. This leads to a six parameter equation describing the complexation process at the molecular level. Actually, there is a good correlation between experimental data and those calculated by using the double-layer L.B.L. model. It was found that cobalt ions were adsorbed via a multi-docking mechanism onto the two adsorbents. The study of the density of receptor sites (PM) confirmed the endothermic nature of the two complexation processes. The van der Waals parameters indicated that the disturbances following the lateral interactions between the adsorbates are the highest in the case of tetraphenylporphyrin. The magnitude of the calculated adsorption energies reveals that cobalt is physisorbed onto tetraphenylporphyrin, whereas chemical forces were found in the case of porphyrins (H2TTPP). In addition, the proposed model allows the prediction of some adsorption thermodynamic functions, which govern the adsorption mechanism, such as entropy, Gibbs free enthalpy, and internal energy.
url http://dx.doi.org/10.1063/5.0009916
work_keys_str_mv AT manelbenyahia anovelexperimentaltechniqueforthefabricationofthevitaminb12nucleususingquartzcrystalmicrobalancestatisticalphysicsmodelingandnewmicroscopicproperties
AT mohamedbenyahia anovelexperimentaltechniqueforthefabricationofthevitaminb12nucleususingquartzcrystalmicrobalancestatisticalphysicsmodelingandnewmicroscopicproperties
AT manelbenyahia novelexperimentaltechniqueforthefabricationofthevitaminb12nucleususingquartzcrystalmicrobalancestatisticalphysicsmodelingandnewmicroscopicproperties
AT mohamedbenyahia novelexperimentaltechniqueforthefabricationofthevitaminb12nucleususingquartzcrystalmicrobalancestatisticalphysicsmodelingandnewmicroscopicproperties
_version_ 1724787104058179584