Multipartite entanglement and topology in holography

Abstract Starting from the entanglement wedge of a multipartite mixed state we describe a purification procedure which involves the gluing of several copies. The resulting geometry has non-trivial topology and a single oriented boundary for each original boundary region. In the purified geometry the...

Full description

Bibliographic Details
Main Author: Jonathan Harper
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP03(2021)116
Description
Summary:Abstract Starting from the entanglement wedge of a multipartite mixed state we describe a purification procedure which involves the gluing of several copies. The resulting geometry has non-trivial topology and a single oriented boundary for each original boundary region. In the purified geometry the original multipartite entanglement wedge cross section is mapped to a minimal surface of a particular non-trivial homology class. In contrast, each original bipartite entanglement wedge cross section is mapped to the minimal wormhole throat around each boundary. Using the bit thread formalism we show how maximal flows for the bipartite and multipartite entanglement wedge cross section can be glued together to form maximal multiflows in the purified geometry. The defining feature differentiating the flows is given by the existence of threads which cross between different copies of the original entanglement wedge. Together these demonstrate a possible connection between multipartite entanglement and the topology of holographic spacetimes.
ISSN:1029-8479