The DROOPING LEAF (DR) gene encoding GDSL esterase is involved in silica deposition in rice (Oryza sativa L.).

Leaf morphology is one of the most important agronomic traits in rice breeding because of its contribution to crop yield. The drooping leaf (dr) mutant was developed from the Ilpum rice cultivar by ethyl methanesulfonate (EMS) mutagenesis. Compared with the wild type, dr plants exhibited drooping le...

Full description

Bibliographic Details
Main Authors: Yoye Yu, Mi-Ok Woo, Piao Rihua, Hee-Jong Koh
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0238887
Description
Summary:Leaf morphology is one of the most important agronomic traits in rice breeding because of its contribution to crop yield. The drooping leaf (dr) mutant was developed from the Ilpum rice cultivar by ethyl methanesulfonate (EMS) mutagenesis. Compared with the wild type, dr plants exhibited drooping leaves accompanied by a small midrib, short panicle, and reduced plant height. The phenotype of the dr plant was caused by a mutation within a single recessive gene on chromosome 2, dr (LOC_Os02g15230), which encodes a GDSL esterase. Analysis of wild-type and dr sequences revealed that the dr allele carried a single nucleotide substitution, glycine to aspartic acid. RNAi targeted to LOC_Os02g15230 produced same phenotypes to the dr mutation, confirming LOC_Os02g15230 as the dr gene. Microscopic observations and plant nutrient analysis of SiO2 revealed that silica was less abundant in dr leaves than in wild-type leaves. This study suggests that the dr gene is involved in the regulation of silica deposition and that disruption of silica processes lead to drooping leaf phenotypes.
ISSN:1932-6203