Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals

For developing the stannite type quarterly crystal photocatalyst, the electronic structure and optical properties of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 were calculated and compared with the parent stannite type quarterly crystal, ZnAg2GeS4. First of all, the four functionals,...

Full description

Bibliographic Details
Main Authors: Ajoy Kumer, Unesco Chakma
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S240584402101570X
id doaj-8dc63a7b17a94e4fb60f86391689ada6
record_format Article
spelling doaj-8dc63a7b17a94e4fb60f86391689ada62021-08-02T04:57:26ZengElsevierHeliyon2405-84402021-07-0177e07467Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionalsAjoy Kumer0Unesco Chakma1Department of Chemistry, European University of Bangladesh, Gabtoli, Dhaka, 1216, Bangladesh; Department of Chemistry, Bangladesh University of Engineering Technology, Dhaka, 1000, Bangladesh; Corresponding author.Department Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka, 1216, BangladeshFor developing the stannite type quarterly crystal photocatalyst, the electronic structure and optical properties of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 were calculated and compared with the parent stannite type quarterly crystal, ZnAg2GeS4. First of all, the four functionals, such as GGA with PBE, GGA with RPBE, GGA with WC and LDA with CA-PZ functionals were used for primary screening of electronic band structure and structural geometry for ZnAg2GeS4 while the band gap was in 0.93, 0.97, 0.77 and 0.67 eV, respectively. It must be mentioned that the experimental value of ZnAg2GeS4 was 0.94 eV so that the GGA with PBE showed the overlapping value of band gap. The main focus of this paper is to evaluate the band structure of newly predicted the stannite type quarterly crystal, ZnAg2GeSe4 using four methods replacing the Sulfur atom by Serium atom on ZnAg2GeS4. The band gap for four methods, such as GGA with PBE, GGA with RPBE, GGA with WC and LDA with CA-PZ functionals, were calculated in 0.84 eV, 0.92 eV, 0.68 eV and 0.58 eV. Afterward, Fe atom was doped by two portions, like 7% and 14%, to make the empirical formula, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4. The numerical values of band gaps for ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 were 0.43 eV, 0.53 eV, 0.35 eV and 0.18 eV and 0.24 eV, 0.31 eV, 0.18 eV and 0.08 eV, respectively, using the four respected DFT methods. For their contributed orbitals of each atom on crystal, the density of state and the partial density of state for ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 crystals were simulated through the GGA with PBE method as standard regarding the calculation of band gap study comparison with experimental magnitude. For giving the further information about the nature in case of optical evidence, the six optical properties, such as absorption, reflection, refractive index, conductivity, dielectric function and loss function were calculated, and make a comparative study. In case of UV light absorption in lighten to optical parameters, the ZnAg2Ge0.86Fe0.14Se4 can show the highest absorption up to convenience energy region as photocatalyst.http://www.sciencedirect.com/science/article/pii/S240584402101570XBand gapDensity of statesPhotocatalystDielectric function
collection DOAJ
language English
format Article
sources DOAJ
author Ajoy Kumer
Unesco Chakma
spellingShingle Ajoy Kumer
Unesco Chakma
Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
Heliyon
Band gap
Density of states
Photocatalyst
Dielectric function
author_facet Ajoy Kumer
Unesco Chakma
author_sort Ajoy Kumer
title Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
title_short Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
title_full Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
title_fullStr Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
title_full_unstemmed Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 through the computational explorations by four DFT functionals
title_sort developing the amazing photocatalyst of znag2gese4, znag2ge0.93fe0.07se4 and znag2ge0.86fe0.14se4 through the computational explorations by four dft functionals
publisher Elsevier
series Heliyon
issn 2405-8440
publishDate 2021-07-01
description For developing the stannite type quarterly crystal photocatalyst, the electronic structure and optical properties of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 were calculated and compared with the parent stannite type quarterly crystal, ZnAg2GeS4. First of all, the four functionals, such as GGA with PBE, GGA with RPBE, GGA with WC and LDA with CA-PZ functionals were used for primary screening of electronic band structure and structural geometry for ZnAg2GeS4 while the band gap was in 0.93, 0.97, 0.77 and 0.67 eV, respectively. It must be mentioned that the experimental value of ZnAg2GeS4 was 0.94 eV so that the GGA with PBE showed the overlapping value of band gap. The main focus of this paper is to evaluate the band structure of newly predicted the stannite type quarterly crystal, ZnAg2GeSe4 using four methods replacing the Sulfur atom by Serium atom on ZnAg2GeS4. The band gap for four methods, such as GGA with PBE, GGA with RPBE, GGA with WC and LDA with CA-PZ functionals, were calculated in 0.84 eV, 0.92 eV, 0.68 eV and 0.58 eV. Afterward, Fe atom was doped by two portions, like 7% and 14%, to make the empirical formula, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4. The numerical values of band gaps for ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 were 0.43 eV, 0.53 eV, 0.35 eV and 0.18 eV and 0.24 eV, 0.31 eV, 0.18 eV and 0.08 eV, respectively, using the four respected DFT methods. For their contributed orbitals of each atom on crystal, the density of state and the partial density of state for ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.86Fe0.14Se4 crystals were simulated through the GGA with PBE method as standard regarding the calculation of band gap study comparison with experimental magnitude. For giving the further information about the nature in case of optical evidence, the six optical properties, such as absorption, reflection, refractive index, conductivity, dielectric function and loss function were calculated, and make a comparative study. In case of UV light absorption in lighten to optical parameters, the ZnAg2Ge0.86Fe0.14Se4 can show the highest absorption up to convenience energy region as photocatalyst.
topic Band gap
Density of states
Photocatalyst
Dielectric function
url http://www.sciencedirect.com/science/article/pii/S240584402101570X
work_keys_str_mv AT ajoykumer developingtheamazingphotocatalystofznag2gese4znag2ge093fe007se4andznag2ge086fe014se4throughthecomputationalexplorationsbyfourdftfunctionals
AT unescochakma developingtheamazingphotocatalystofznag2gese4znag2ge093fe007se4andznag2ge086fe014se4throughthecomputationalexplorationsbyfourdftfunctionals
_version_ 1721241834738417664