Dynamic Output Feedback Control of Discrete Markov Jump Systems based on Event-Triggered Mechanism

This paper is devoted to the co-design strategy of event-triggered scheme and dynamic output feedback controller for a class of discrete-time networked control systems (NCSs) with random time delay. An event-triggered mechanism is given to ease the information transmission. Both the sensor and contr...

Full description

Bibliographic Details
Main Authors: Zhen Zhao, Jinfeng Gao, Tingting Zhang
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/4215147
Description
Summary:This paper is devoted to the co-design strategy of event-triggered scheme and dynamic output feedback controller for a class of discrete-time networked control systems (NCSs) with random time delay. An event-triggered mechanism is given to ease the information transmission. Both the sensor and controller are set with mode-dependent quantizers in the system. A Markov process is used to model the time delay which is used to describe the quantization density. By employing the Lyapunov-Krasovskii functional and linear matrix inequality (LMI), sufficient conditions are obtained for the system. A specific example is given to demonstrate the proposed approach.
ISSN:1687-5249
1687-5257