Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.

In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observ...

Full description

Bibliographic Details
Main Authors: Matthew A Oberhardt, Jacek Puchałka, Vítor A P Martins dos Santos, Jason A Papin
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-03-01
Series:PLoS Computational Biology
Online Access:http://europepmc.org/articles/PMC3068926?pdf=render
id doaj-8e39a64463804b77a917572da591ad7a
record_format Article
spelling doaj-8e39a64463804b77a917572da591ad7a2020-11-25T01:13:12ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582011-03-0173e100111610.1371/journal.pcbi.1001116Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.Matthew A OberhardtJacek PuchałkaVítor A P Martins dos SantosJason A PapinIn the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species.http://europepmc.org/articles/PMC3068926?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Matthew A Oberhardt
Jacek Puchałka
Vítor A P Martins dos Santos
Jason A Papin
spellingShingle Matthew A Oberhardt
Jacek Puchałka
Vítor A P Martins dos Santos
Jason A Papin
Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
PLoS Computational Biology
author_facet Matthew A Oberhardt
Jacek Puchałka
Vítor A P Martins dos Santos
Jason A Papin
author_sort Matthew A Oberhardt
title Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
title_short Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
title_full Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
title_fullStr Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
title_full_unstemmed Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
title_sort reconciliation of genome-scale metabolic reconstructions for comparative systems analysis.
publisher Public Library of Science (PLoS)
series PLoS Computational Biology
issn 1553-734X
1553-7358
publishDate 2011-03-01
description In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species.
url http://europepmc.org/articles/PMC3068926?pdf=render
work_keys_str_mv AT matthewaoberhardt reconciliationofgenomescalemetabolicreconstructionsforcomparativesystemsanalysis
AT jacekpuchałka reconciliationofgenomescalemetabolicreconstructionsforcomparativesystemsanalysis
AT vitorapmartinsdossantos reconciliationofgenomescalemetabolicreconstructionsforcomparativesystemsanalysis
AT jasonapapin reconciliationofgenomescalemetabolicreconstructionsforcomparativesystemsanalysis
_version_ 1725162942687608832