Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application

An inkjet- and 3D-printed capacitive sensor system with an all-digital and flexible sensor read-out hardware is reported. It enables spectrometer devices with significantly reduced device outlines and costs. The sensor is developed as multilayer inkjet-printed electrode structure on a 3D-printed cop...

Full description

Bibliographic Details
Main Authors: Lisa-Marie Faller, Martin Lenzhofer, Christina Hirschl, Martin Kraft, Hubert Zangl
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/3/443
id doaj-8e9f95d873064fcb9c7eef39886cdb18
record_format Article
spelling doaj-8e9f95d873064fcb9c7eef39886cdb182020-11-24T21:50:11ZengMDPI AGSensors1424-82202019-01-0119344310.3390/s19030443s19030443Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer ApplicationLisa-Marie Faller0Martin Lenzhofer1Christina Hirschl2Martin Kraft3Hubert Zangl4Institute for Smart System Technologies, Sensors and Actuators Department, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, AustriaCarinthia Tech Research AG, High Tech Campus, 9524 Villach, AustriaCarinthia Tech Research AG, High Tech Campus, 9524 Villach, AustriaCarinthia Tech Research AG, High Tech Campus, 9524 Villach, AustriaInstitute for Smart System Technologies, Sensors and Actuators Department, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, AustriaAn inkjet- and 3D-printed capacitive sensor system with an all-digital and flexible sensor read-out hardware is reported. It enables spectrometer devices with significantly reduced device outlines and costs. The sensor is developed as multilayer inkjet-printed electrode structure on a 3D-printed copper housing. Very high required position resolutions of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mi>e</mi> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>&lt;</mo> <mn>50</mn> <mspace width="0.17em"></mspace> <mi>nm</mi> </mrow> </semantics> </math> </inline-formula> and a wide measurement range of <inline-formula> <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> = 1000 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#956;</mi> </semantics> </math> </inline-formula>m at an offset of <inline-formula> <math display="inline"> <semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> = 1000 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#956;</mi> </semantics> </math> </inline-formula>m in the considered spectrometers motivate this work. The read-out hardware provides high sampling rates of up to <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>&#8776;</mo> <mn>10</mn> <mspace width="0.17em"></mspace> <mi>ns</mi> </mrow> </semantics> </math> </inline-formula> and enables the generation of trigger signals, i.e., the mirror control signal, without a time lag. The read-out circuitry is designed as a carrier frequency system, which enables flexible choices of bandwidth and measurement signal frequency. It thus allows for separation in frequency from coupling parasitics, i.e., other frequencies present in the device under test, and makes the read-out quasi-noise-immune.https://www.mdpi.com/1424-8220/19/3/443capacitive sensornanometer position measurementinkjet-printing3D-printed metalsadditive manufacturing
collection DOAJ
language English
format Article
sources DOAJ
author Lisa-Marie Faller
Martin Lenzhofer
Christina Hirschl
Martin Kraft
Hubert Zangl
spellingShingle Lisa-Marie Faller
Martin Lenzhofer
Christina Hirschl
Martin Kraft
Hubert Zangl
Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
Sensors
capacitive sensor
nanometer position measurement
inkjet-printing
3D-printed metals
additive manufacturing
author_facet Lisa-Marie Faller
Martin Lenzhofer
Christina Hirschl
Martin Kraft
Hubert Zangl
author_sort Lisa-Marie Faller
title Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
title_short Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
title_full Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
title_fullStr Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
title_full_unstemmed Characterization of a Robust 3D- and Inkjet-Printed Capacitive Position Sensor for a Spectrometer Application
title_sort characterization of a robust 3d- and inkjet-printed capacitive position sensor for a spectrometer application
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-01-01
description An inkjet- and 3D-printed capacitive sensor system with an all-digital and flexible sensor read-out hardware is reported. It enables spectrometer devices with significantly reduced device outlines and costs. The sensor is developed as multilayer inkjet-printed electrode structure on a 3D-printed copper housing. Very high required position resolutions of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mi>e</mi> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>&lt;</mo> <mn>50</mn> <mspace width="0.17em"></mspace> <mi>nm</mi> </mrow> </semantics> </math> </inline-formula> and a wide measurement range of <inline-formula> <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> = 1000 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#956;</mi> </semantics> </math> </inline-formula>m at an offset of <inline-formula> <math display="inline"> <semantics> <msub> <mi>d</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula> = 1000 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#956;</mi> </semantics> </math> </inline-formula>m in the considered spectrometers motivate this work. The read-out hardware provides high sampling rates of up to <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>&#8776;</mo> <mn>10</mn> <mspace width="0.17em"></mspace> <mi>ns</mi> </mrow> </semantics> </math> </inline-formula> and enables the generation of trigger signals, i.e., the mirror control signal, without a time lag. The read-out circuitry is designed as a carrier frequency system, which enables flexible choices of bandwidth and measurement signal frequency. It thus allows for separation in frequency from coupling parasitics, i.e., other frequencies present in the device under test, and makes the read-out quasi-noise-immune.
topic capacitive sensor
nanometer position measurement
inkjet-printing
3D-printed metals
additive manufacturing
url https://www.mdpi.com/1424-8220/19/3/443
work_keys_str_mv AT lisamariefaller characterizationofarobust3dandinkjetprintedcapacitivepositionsensorforaspectrometerapplication
AT martinlenzhofer characterizationofarobust3dandinkjetprintedcapacitivepositionsensorforaspectrometerapplication
AT christinahirschl characterizationofarobust3dandinkjetprintedcapacitivepositionsensorforaspectrometerapplication
AT martinkraft characterizationofarobust3dandinkjetprintedcapacitivepositionsensorforaspectrometerapplication
AT hubertzangl characterizationofarobust3dandinkjetprintedcapacitivepositionsensorforaspectrometerapplication
_version_ 1725884767417663488