Slow conduction and gap junction remodeling in murine ventricle after chronic alcohol ingestion

<p>Abstract</p> <p>Background</p> <p>Long-term heavy alcohol drinkers are prone to the development of cardiac arrhythmia. To understand the mechanisms, we evaluated the cardiac structural and electrophysiological changes in mice chronically drinking excessive alcohol.&l...

Full description

Bibliographic Details
Main Authors: Tsai Cheng-Ho, Lin Cheng-I, Ko Yu-Shien, Tseng Ya-Ming, Hong Ray-Ching, Hung Chung-Lieh, Lai Yu-Jun, Yeh Hung-I
Format: Article
Language:English
Published: BMC 2011-09-01
Series:Journal of Biomedical Science
Subjects:
Online Access:http://www.jbiomedsci.com/content/18/1/72
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Long-term heavy alcohol drinkers are prone to the development of cardiac arrhythmia. To understand the mechanisms, we evaluated the cardiac structural and electrophysiological changes in mice chronically drinking excessive alcohol.</p> <p>Results</p> <p>Male C57BL/6J mice were given 36% alcohol in the drinking water. Those given blank water were used as control. Twelve weeks later, the phenotypic characteristics of the heart, including gap junctions and electrical properties were examined. In the alcohol group the ventricles contained a smaller size of cardiomyocytes and a higher density of capillary networks, compared to the control. Western blots showed that, after drinking alcohol, the content of connexin43 (Cx43) protein in the left ventricle was increased by 18% (p < 0.05). Consistently, immunoconfocal microscopy demonstrated that Cx43 gap junctions were up-regulated in the alcohol group with a disorganized distribution, compared to the control. Optical mapping showed that the alcohol group had a reduced conduction velocity (40 ± 18 vs 60 ± 7 cm/sec, p < 0.05) and a higher incidence of ventricular tachyarrhythmia (62% vs 30%, p < 0.05).</p> <p>Conclusion</p> <p>Long-term excessive alcohol intake resulted in extensive cardiac remodeling, including changes in expression and distribution of gap junctions, growth of capillary network, reduction of cardiomyocyte size, and decrease of myocardial conduction.</p>
ISSN:1021-7770
1423-0127