Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos

The particle metaheuristics Particle Swarm Optimization (PSO) since its appearance has proven to be efficient in solving optimization problems, the variation of its parameters has allowed to improve its efficiency. The present work is focused on performinga comparative study...

Full description

Bibliographic Details
Main Authors: Elba Bodero Poveda, Guillermo Leguizamón
Format: Article
Language:Spanish
Published: Universidad Nacional de Chimborazo 2018-06-01
Series:NOVASINERGIA
Subjects:
Online Access:http://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/23/5
id doaj-8eeb0e6b77f8410f9f28291a7dd4cfc8
record_format Article
spelling doaj-8eeb0e6b77f8410f9f28291a7dd4cfc82020-11-25T02:31:02ZspaUniversidad Nacional de ChimborazoNOVASINERGIA2631-26542018-06-01113340Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de CostosElba Bodero Poveda0Guillermo Leguizamón1Universidad Nacional de La Plata, ArgentinaUniversidad Nacional de San Luis, ArgentinaThe particle metaheuristics Particle Swarm Optimization (PSO) since its appearance has proven to be efficient in solving optimization problems, the variation of its parameters has allowed to improve its efficiency. The present work is focused on performinga comparative study of the effect of the acceleration coefficients c1and c2, on the performance of PSO to solve a problem of cost estimation, through an Artificial Neural Network (ANN) sigmoidal feedforward. A range of values was evaluated in the acceleration coefficients, the other parameters, in this case inertial factor and the swarm size were worked with fixed values. The validation of the solution was carried out by means of a pipeline data set for fluid transfer used in the industry, coming from a real case, with information related to weight, welding type, diameter and the corresponding cost. The objective function used is the Mean Square Error (MSE), calculated between the observed values and the values estimated by the ANN. From the results it can be seen that very small values of c1and c2obtain low accuracy in the estimation of pipe manufacturing costs, while the best accuracy is achieved by means of acceleration coefficients with values greater than or equal to 0.5http://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/23/5Coeficientes de Aceleración PSOEstimación de CostosMetaheurística PoblacionalParticle Swarm OptimizationRed Neuronal Artificial
collection DOAJ
language Spanish
format Article
sources DOAJ
author Elba Bodero Poveda
Guillermo Leguizamón
spellingShingle Elba Bodero Poveda
Guillermo Leguizamón
Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
NOVASINERGIA
Coeficientes de Aceleración PSO
Estimación de Costos
Metaheurística Poblacional
Particle Swarm Optimization
Red Neuronal Artificial
author_facet Elba Bodero Poveda
Guillermo Leguizamón
author_sort Elba Bodero Poveda
title Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
title_short Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
title_full Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
title_fullStr Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
title_full_unstemmed Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos
title_sort efecto de los coeficientes de aceleración de pso en el desempeño de una red neuronal artificial aplicada a la estimación de costos
publisher Universidad Nacional de Chimborazo
series NOVASINERGIA
issn 2631-2654
publishDate 2018-06-01
description The particle metaheuristics Particle Swarm Optimization (PSO) since its appearance has proven to be efficient in solving optimization problems, the variation of its parameters has allowed to improve its efficiency. The present work is focused on performinga comparative study of the effect of the acceleration coefficients c1and c2, on the performance of PSO to solve a problem of cost estimation, through an Artificial Neural Network (ANN) sigmoidal feedforward. A range of values was evaluated in the acceleration coefficients, the other parameters, in this case inertial factor and the swarm size were worked with fixed values. The validation of the solution was carried out by means of a pipeline data set for fluid transfer used in the industry, coming from a real case, with information related to weight, welding type, diameter and the corresponding cost. The objective function used is the Mean Square Error (MSE), calculated between the observed values and the values estimated by the ANN. From the results it can be seen that very small values of c1and c2obtain low accuracy in the estimation of pipe manufacturing costs, while the best accuracy is achieved by means of acceleration coefficients with values greater than or equal to 0.5
topic Coeficientes de Aceleración PSO
Estimación de Costos
Metaheurística Poblacional
Particle Swarm Optimization
Red Neuronal Artificial
url http://novasinergia.unach.edu.ec/index.php/novasinergia/article/view/23/5
work_keys_str_mv AT elbaboderopoveda efectodeloscoeficientesdeaceleraciondepsoeneldesempenodeunaredneuronalartificialaplicadaalaestimaciondecostos
AT guillermoleguizamon efectodeloscoeficientesdeaceleraciondepsoeneldesempenodeunaredneuronalartificialaplicadaalaestimaciondecostos
_version_ 1724825725520838656