Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data

In this work, we analysed aerosol measurements from lidar and PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>10</mn></msub></semantics></math>&...

Full description

Bibliographic Details
Main Authors: Fieke Rader, Rita Traversi, Mirko Severi, Silvia Becagli, Kim-Janka Müller, Konstantina Nakoudi, Christoph Ritter
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/2/271
id doaj-8f27133cb2b242ac93c564ac9bc32e25
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Fieke Rader
Rita Traversi
Mirko Severi
Silvia Becagli
Kim-Janka Müller
Konstantina Nakoudi
Christoph Ritter
spellingShingle Fieke Rader
Rita Traversi
Mirko Severi
Silvia Becagli
Kim-Janka Müller
Konstantina Nakoudi
Christoph Ritter
Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
Atmosphere
Arctic haze
aerosol measurements
aerosol properties
in situ aerosol measurements
aerosol remote sensing
lidar
author_facet Fieke Rader
Rita Traversi
Mirko Severi
Silvia Becagli
Kim-Janka Müller
Konstantina Nakoudi
Christoph Ritter
author_sort Fieke Rader
title Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
title_short Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
title_full Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
title_fullStr Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
title_full_unstemmed Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar Data
title_sort overview of aerosol properties in the european arctic in spring 2019 based on in situ measurements and lidar data
publisher MDPI AG
series Atmosphere
issn 2073-4433
publishDate 2021-02-01
description In this work, we analysed aerosol measurements from lidar and PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>10</mn></msub></semantics></math></inline-formula> samples around the European Arctic site of Ny-Ålesund during late winter–early spring 2019. Lidar observations above 700 m revealed time-independent values for the aerosol backscatter coefficient (<inline-formula>β<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula>), colour ratio (CR), linear particle depolarisation ratio (<inline-formula>δ<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>) and lidar ratio (LR) from January to April. In contrast to previous years, in 2019 the early springtime backscatter increase in the troposphere, linked to <i>Arctic haze</i>, was not observed. In situ nss-sulphate (nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula>) concentration was measured both at a coastal (Gruvebadet) and a mountain (Zeppelin) station, a few kilometres apart. As we employed different measurement techniques at sites embedded in complex orography, we investigated their agreement. From the lidar perspective, the aerosol load (indicated by <inline-formula>β<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula>) above 700 m changed by less than a factor of 3.5. On the contrary, the daily nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> concentration erratically changed by a factor of 25 (from 0.1 to 2.5 ng m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>) both at Gruvebadet and Zeppelin station, with the latter mostly lying above the boundary layer. Moreover, daily nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> concentration was remarkably variable (correlation about 0.7 between the sites), despite its long-range origin. However, on a seasonal average basis the in situ sites agreed very well. Therefore, it can be argued that nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> advection mainly takes place in the lowest free troposphere, while under complex orography it is mixed downwards by local boundary layer processes. Our study suggests that at Arctic sites with complex orography ground-based aerosol properties show higher temporal variability compared to the free troposphere. This implies that the comparison between remote sensing and in situ observations might be more reasonable on longer time scales, i.e., monthly and seasonal basis even for nearby sites.
topic Arctic haze
aerosol measurements
aerosol properties
in situ aerosol measurements
aerosol remote sensing
lidar
url https://www.mdpi.com/2073-4433/12/2/271
work_keys_str_mv AT fiekerader overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT ritatraversi overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT mirkoseveri overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT silviabecagli overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT kimjankamuller overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT konstantinanakoudi overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
AT christophritter overviewofaerosolpropertiesintheeuropeanarcticinspring2019basedoninsitumeasurementsandlidardata
_version_ 1724263920882941952
spelling doaj-8f27133cb2b242ac93c564ac9bc32e252021-02-18T00:05:46ZengMDPI AGAtmosphere2073-44332021-02-011227127110.3390/atmos12020271Overview of Aerosol Properties in the European Arctic in Spring 2019 Based on In Situ Measurements and Lidar DataFieke Rader0Rita Traversi1Mirko Severi2Silvia Becagli3Kim-Janka Müller4Konstantina Nakoudi5Christoph Ritter6Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Telegrafenberg A45, 14473 Potsdam, GermanyDepartment of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, ItalyDepartment of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, ItalyDepartment of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, ItalyHelmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Telegrafenberg A45, 14473 Potsdam, GermanyHelmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Telegrafenberg A45, 14473 Potsdam, GermanyHelmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Telegrafenberg A45, 14473 Potsdam, GermanyIn this work, we analysed aerosol measurements from lidar and PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>10</mn></msub></semantics></math></inline-formula> samples around the European Arctic site of Ny-Ålesund during late winter–early spring 2019. Lidar observations above 700 m revealed time-independent values for the aerosol backscatter coefficient (<inline-formula>β<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula>), colour ratio (CR), linear particle depolarisation ratio (<inline-formula>δ<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>) and lidar ratio (LR) from January to April. In contrast to previous years, in 2019 the early springtime backscatter increase in the troposphere, linked to <i>Arctic haze</i>, was not observed. In situ nss-sulphate (nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula>) concentration was measured both at a coastal (Gruvebadet) and a mountain (Zeppelin) station, a few kilometres apart. As we employed different measurement techniques at sites embedded in complex orography, we investigated their agreement. From the lidar perspective, the aerosol load (indicated by <inline-formula>β<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">β</mi></semantics></math></inline-formula>) above 700 m changed by less than a factor of 3.5. On the contrary, the daily nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> concentration erratically changed by a factor of 25 (from 0.1 to 2.5 ng m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>) both at Gruvebadet and Zeppelin station, with the latter mostly lying above the boundary layer. Moreover, daily nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> concentration was remarkably variable (correlation about 0.7 between the sites), despite its long-range origin. However, on a seasonal average basis the in situ sites agreed very well. Therefore, it can be argued that nss-SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow></mrow><mn>4</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></semantics></math></inline-formula> advection mainly takes place in the lowest free troposphere, while under complex orography it is mixed downwards by local boundary layer processes. Our study suggests that at Arctic sites with complex orography ground-based aerosol properties show higher temporal variability compared to the free troposphere. This implies that the comparison between remote sensing and in situ observations might be more reasonable on longer time scales, i.e., monthly and seasonal basis even for nearby sites.https://www.mdpi.com/2073-4433/12/2/271Arctic hazeaerosol measurementsaerosol propertiesin situ aerosol measurementsaerosol remote sensinglidar