Qualitative properties of solutions to elliptic singular problems
<p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inlin...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1999-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/3/197624 |
id |
doaj-8fbafb9ef8994a3592a5ca1963259411 |
---|---|
record_format |
Article |
spelling |
doaj-8fbafb9ef8994a3592a5ca19632594112020-11-24T20:54:28ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1999-01-0119994197624Qualitative properties of solutions to elliptic singular problemsGladiali FPorru GBerhanu S<p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i3.gif"/></inline-formula> on <inline-formula><graphic file="1029-242X-1999-197624-i4.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-1999-197624-i5.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i6.gif"/></inline-formula>, we find the estimate <inline-formula><graphic file="1029-242X-1999-197624-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-197624-i8.gif"/></inline-formula> depends on <inline-formula><graphic file="1029-242X-1999-197624-i9.gif"/></inline-formula> only, <inline-formula><graphic file="1029-242X-1999-197624-i10.gif"/></inline-formula> denotes the distance from <inline-formula><graphic file="1029-242X-1999-197624-i11.gif"/></inline-formula> to <inline-formula><graphic file="1029-242X-1999-197624-i12.gif"/></inline-formula> and is <inline-formula><graphic file="1029-242X-1999-197624-i13.gif"/></inline-formula> suitable constant. For <inline-formula><graphic file="1029-242X-1999-197624-i14.gif"/></inline-formula>, we prove that the function <inline-formula><graphic file="1029-242X-1999-197624-i15.gif"/></inline-formula> is concave whenever <inline-formula><graphic file="1029-242X-1999-197624-i16.gif"/></inline-formula> is convex. A similar result is well known for the equation <inline-formula><graphic file="1029-242X-1999-197624-i17.gif"/></inline-formula>, with <inline-formula><graphic file="1029-242X-1999-197624-i18.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i20.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-197624-i21.gif"/></inline-formula> we prove convexity sharpness results.</p>http://www.journalofinequalitiesandapplications.com/content/3/197624Singular equationsBoundary behaviourConvexity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gladiali F Porru G Berhanu S |
spellingShingle |
Gladiali F Porru G Berhanu S Qualitative properties of solutions to elliptic singular problems Journal of Inequalities and Applications Singular equations Boundary behaviour Convexity |
author_facet |
Gladiali F Porru G Berhanu S |
author_sort |
Gladiali F |
title |
Qualitative properties of solutions to elliptic singular problems |
title_short |
Qualitative properties of solutions to elliptic singular problems |
title_full |
Qualitative properties of solutions to elliptic singular problems |
title_fullStr |
Qualitative properties of solutions to elliptic singular problems |
title_full_unstemmed |
Qualitative properties of solutions to elliptic singular problems |
title_sort |
qualitative properties of solutions to elliptic singular problems |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
1999-01-01 |
description |
<p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i3.gif"/></inline-formula> on <inline-formula><graphic file="1029-242X-1999-197624-i4.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-1999-197624-i5.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i6.gif"/></inline-formula>, we find the estimate <inline-formula><graphic file="1029-242X-1999-197624-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-197624-i8.gif"/></inline-formula> depends on <inline-formula><graphic file="1029-242X-1999-197624-i9.gif"/></inline-formula> only, <inline-formula><graphic file="1029-242X-1999-197624-i10.gif"/></inline-formula> denotes the distance from <inline-formula><graphic file="1029-242X-1999-197624-i11.gif"/></inline-formula> to <inline-formula><graphic file="1029-242X-1999-197624-i12.gif"/></inline-formula> and is <inline-formula><graphic file="1029-242X-1999-197624-i13.gif"/></inline-formula> suitable constant. For <inline-formula><graphic file="1029-242X-1999-197624-i14.gif"/></inline-formula>, we prove that the function <inline-formula><graphic file="1029-242X-1999-197624-i15.gif"/></inline-formula> is concave whenever <inline-formula><graphic file="1029-242X-1999-197624-i16.gif"/></inline-formula> is convex. A similar result is well known for the equation <inline-formula><graphic file="1029-242X-1999-197624-i17.gif"/></inline-formula>, with <inline-formula><graphic file="1029-242X-1999-197624-i18.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i20.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-197624-i21.gif"/></inline-formula> we prove convexity sharpness results.</p> |
topic |
Singular equations Boundary behaviour Convexity |
url |
http://www.journalofinequalitiesandapplications.com/content/3/197624 |
work_keys_str_mv |
AT gladialif qualitativepropertiesofsolutionstoellipticsingularproblems AT porrug qualitativepropertiesofsolutionstoellipticsingularproblems AT berhanus qualitativepropertiesofsolutionstoellipticsingularproblems |
_version_ |
1716794514440454144 |