Qualitative properties of solutions to elliptic singular problems

<p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inlin...

Full description

Bibliographic Details
Main Authors: Gladiali F, Porru G, Berhanu S
Format: Article
Language:English
Published: SpringerOpen 1999-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/3/197624
id doaj-8fbafb9ef8994a3592a5ca1963259411
record_format Article
spelling doaj-8fbafb9ef8994a3592a5ca19632594112020-11-24T20:54:28ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1999-01-0119994197624Qualitative properties of solutions to elliptic singular problemsGladiali FPorru GBerhanu S<p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i3.gif"/></inline-formula> on <inline-formula><graphic file="1029-242X-1999-197624-i4.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-1999-197624-i5.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i6.gif"/></inline-formula>, we find the estimate <inline-formula><graphic file="1029-242X-1999-197624-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-197624-i8.gif"/></inline-formula> depends on <inline-formula><graphic file="1029-242X-1999-197624-i9.gif"/></inline-formula> only, <inline-formula><graphic file="1029-242X-1999-197624-i10.gif"/></inline-formula> denotes the distance from <inline-formula><graphic file="1029-242X-1999-197624-i11.gif"/></inline-formula> to <inline-formula><graphic file="1029-242X-1999-197624-i12.gif"/></inline-formula> and is <inline-formula><graphic file="1029-242X-1999-197624-i13.gif"/></inline-formula> suitable constant. For <inline-formula><graphic file="1029-242X-1999-197624-i14.gif"/></inline-formula>, we prove that the function <inline-formula><graphic file="1029-242X-1999-197624-i15.gif"/></inline-formula> is concave whenever <inline-formula><graphic file="1029-242X-1999-197624-i16.gif"/></inline-formula> is convex. A similar result is well known for the equation <inline-formula><graphic file="1029-242X-1999-197624-i17.gif"/></inline-formula>, with <inline-formula><graphic file="1029-242X-1999-197624-i18.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i20.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-197624-i21.gif"/></inline-formula> we prove convexity sharpness results.</p>http://www.journalofinequalitiesandapplications.com/content/3/197624Singular equationsBoundary behaviourConvexity
collection DOAJ
language English
format Article
sources DOAJ
author Gladiali F
Porru G
Berhanu S
spellingShingle Gladiali F
Porru G
Berhanu S
Qualitative properties of solutions to elliptic singular problems
Journal of Inequalities and Applications
Singular equations
Boundary behaviour
Convexity
author_facet Gladiali F
Porru G
Berhanu S
author_sort Gladiali F
title Qualitative properties of solutions to elliptic singular problems
title_short Qualitative properties of solutions to elliptic singular problems
title_full Qualitative properties of solutions to elliptic singular problems
title_fullStr Qualitative properties of solutions to elliptic singular problems
title_full_unstemmed Qualitative properties of solutions to elliptic singular problems
title_sort qualitative properties of solutions to elliptic singular problems
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 1999-01-01
description <p/> <p>We investigate the singular boundary value problem <inline-formula><graphic file="1029-242X-1999-197624-i1.gif"/></inline-formula> in <inline-formula><graphic file="1029-242X-1999-197624-i2.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i3.gif"/></inline-formula> on <inline-formula><graphic file="1029-242X-1999-197624-i4.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-1999-197624-i5.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i6.gif"/></inline-formula>, we find the estimate <inline-formula><graphic file="1029-242X-1999-197624-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-1999-197624-i8.gif"/></inline-formula> depends on <inline-formula><graphic file="1029-242X-1999-197624-i9.gif"/></inline-formula> only, <inline-formula><graphic file="1029-242X-1999-197624-i10.gif"/></inline-formula> denotes the distance from <inline-formula><graphic file="1029-242X-1999-197624-i11.gif"/></inline-formula> to <inline-formula><graphic file="1029-242X-1999-197624-i12.gif"/></inline-formula> and is <inline-formula><graphic file="1029-242X-1999-197624-i13.gif"/></inline-formula> suitable constant. For <inline-formula><graphic file="1029-242X-1999-197624-i14.gif"/></inline-formula>, we prove that the function <inline-formula><graphic file="1029-242X-1999-197624-i15.gif"/></inline-formula> is concave whenever <inline-formula><graphic file="1029-242X-1999-197624-i16.gif"/></inline-formula> is convex. A similar result is well known for the equation <inline-formula><graphic file="1029-242X-1999-197624-i17.gif"/></inline-formula>, with <inline-formula><graphic file="1029-242X-1999-197624-i18.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-1999-197624-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-1999-197624-i20.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-1999-197624-i21.gif"/></inline-formula> we prove convexity sharpness results.</p>
topic Singular equations
Boundary behaviour
Convexity
url http://www.journalofinequalitiesandapplications.com/content/3/197624
work_keys_str_mv AT gladialif qualitativepropertiesofsolutionstoellipticsingularproblems
AT porrug qualitativepropertiesofsolutionstoellipticsingularproblems
AT berhanus qualitativepropertiesofsolutionstoellipticsingularproblems
_version_ 1716794514440454144