Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.

Ultra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k...

Full description

Bibliographic Details
Main Authors: Fa-Hsuan Lin, Panu T Vesanen, Yi-Cheng Hsu, Jaakko O Nieminen, Koos C J Zevenhoven, Juhani Dabek, Lauri T Parkkonen, Juha Simola, Antti I Ahonen, Risto J Ilmoniemi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3633989?pdf=render
id doaj-8fda99b1c5474a8bb34a0cf7750b6287
record_format Article
spelling doaj-8fda99b1c5474a8bb34a0cf7750b62872020-11-25T02:15:31ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0184e6165210.1371/journal.pone.0061652Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.Fa-Hsuan LinPanu T VesanenYi-Cheng HsuJaakko O NieminenKoos C J ZevenhovenJuhani DabekLauri T ParkkonenJuha SimolaAntti I AhonenRisto J IlmoniemiUltra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction.http://europepmc.org/articles/PMC3633989?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Fa-Hsuan Lin
Panu T Vesanen
Yi-Cheng Hsu
Jaakko O Nieminen
Koos C J Zevenhoven
Juhani Dabek
Lauri T Parkkonen
Juha Simola
Antti I Ahonen
Risto J Ilmoniemi
spellingShingle Fa-Hsuan Lin
Panu T Vesanen
Yi-Cheng Hsu
Jaakko O Nieminen
Koos C J Zevenhoven
Juhani Dabek
Lauri T Parkkonen
Juha Simola
Antti I Ahonen
Risto J Ilmoniemi
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
PLoS ONE
author_facet Fa-Hsuan Lin
Panu T Vesanen
Yi-Cheng Hsu
Jaakko O Nieminen
Koos C J Zevenhoven
Juhani Dabek
Lauri T Parkkonen
Juha Simola
Antti I Ahonen
Risto J Ilmoniemi
author_sort Fa-Hsuan Lin
title Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
title_short Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
title_full Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
title_fullStr Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
title_full_unstemmed Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
title_sort suppressing multi-channel ultra-low-field mri measurement noise using data consistency and image sparsity.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description Ultra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction.
url http://europepmc.org/articles/PMC3633989?pdf=render
work_keys_str_mv AT fahsuanlin suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT panutvesanen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT yichenghsu suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT jaakkoonieminen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT kooscjzevenhoven suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT juhanidabek suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT lauritparkkonen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT juhasimola suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT anttiiahonen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
AT ristojilmoniemi suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity
_version_ 1724895712408240128