Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.
Ultra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3633989?pdf=render |
id |
doaj-8fda99b1c5474a8bb34a0cf7750b6287 |
---|---|
record_format |
Article |
spelling |
doaj-8fda99b1c5474a8bb34a0cf7750b62872020-11-25T02:15:31ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0184e6165210.1371/journal.pone.0061652Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity.Fa-Hsuan LinPanu T VesanenYi-Cheng HsuJaakko O NieminenKoos C J ZevenhovenJuhani DabekLauri T ParkkonenJuha SimolaAntti I AhonenRisto J IlmoniemiUltra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction.http://europepmc.org/articles/PMC3633989?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fa-Hsuan Lin Panu T Vesanen Yi-Cheng Hsu Jaakko O Nieminen Koos C J Zevenhoven Juhani Dabek Lauri T Parkkonen Juha Simola Antti I Ahonen Risto J Ilmoniemi |
spellingShingle |
Fa-Hsuan Lin Panu T Vesanen Yi-Cheng Hsu Jaakko O Nieminen Koos C J Zevenhoven Juhani Dabek Lauri T Parkkonen Juha Simola Antti I Ahonen Risto J Ilmoniemi Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. PLoS ONE |
author_facet |
Fa-Hsuan Lin Panu T Vesanen Yi-Cheng Hsu Jaakko O Nieminen Koos C J Zevenhoven Juhani Dabek Lauri T Parkkonen Juha Simola Antti I Ahonen Risto J Ilmoniemi |
author_sort |
Fa-Hsuan Lin |
title |
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. |
title_short |
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. |
title_full |
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. |
title_fullStr |
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. |
title_full_unstemmed |
Suppressing multi-channel ultra-low-field MRI measurement noise using data consistency and image sparsity. |
title_sort |
suppressing multi-channel ultra-low-field mri measurement noise using data consistency and image sparsity. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
Ultra-low-field (ULF) MRI (B 0 = 10-100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction. |
url |
http://europepmc.org/articles/PMC3633989?pdf=render |
work_keys_str_mv |
AT fahsuanlin suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT panutvesanen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT yichenghsu suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT jaakkoonieminen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT kooscjzevenhoven suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT juhanidabek suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT lauritparkkonen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT juhasimola suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT anttiiahonen suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT ristojilmoniemi suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity |
_version_ |
1724895712408240128 |