Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ

<p>Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic a...

Full description

Bibliographic Details
Main Authors: B. Gaubert, L. K. Emmons, K. Raeder, S. Tilmes, K. Miyazaki, A. F. Arellano Jr., N. Elguindi, C. Granier, W. Tang, J. Barré, H. M. Worden, R. R. Buchholz, D. P. Edwards, P. Franke, J. L. Anderson, M. Saunois, J. Schroeder, J.-H. Woo, I. J. Simpson, D. R. Blake, S. Meinardi, P. O. Wennberg, J. Crounse, A. Teng, M. Kim, R. R. Dickerson, H. He, X. Ren, S. E. Pusede, G. S. Diskin
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf
id doaj-8ffc0c8366fd4e27a456d9f234799f0a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author B. Gaubert
L. K. Emmons
K. Raeder
S. Tilmes
K. Miyazaki
A. F. Arellano Jr.
N. Elguindi
C. Granier
C. Granier
W. Tang
J. Barré
H. M. Worden
R. R. Buchholz
D. P. Edwards
P. Franke
J. L. Anderson
M. Saunois
J. Schroeder
J.-H. Woo
I. J. Simpson
D. R. Blake
S. Meinardi
P. O. Wennberg
J. Crounse
A. Teng
M. Kim
R. R. Dickerson
R. R. Dickerson
H. He
H. He
X. Ren
X. Ren
S. E. Pusede
G. S. Diskin
spellingShingle B. Gaubert
L. K. Emmons
K. Raeder
S. Tilmes
K. Miyazaki
A. F. Arellano Jr.
N. Elguindi
C. Granier
C. Granier
W. Tang
J. Barré
H. M. Worden
R. R. Buchholz
D. P. Edwards
P. Franke
J. L. Anderson
M. Saunois
J. Schroeder
J.-H. Woo
I. J. Simpson
D. R. Blake
S. Meinardi
P. O. Wennberg
J. Crounse
A. Teng
M. Kim
R. R. Dickerson
R. R. Dickerson
H. He
H. He
X. Ren
X. Ren
S. E. Pusede
G. S. Diskin
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
Atmospheric Chemistry and Physics
author_facet B. Gaubert
L. K. Emmons
K. Raeder
S. Tilmes
K. Miyazaki
A. F. Arellano Jr.
N. Elguindi
C. Granier
C. Granier
W. Tang
J. Barré
H. M. Worden
R. R. Buchholz
D. P. Edwards
P. Franke
J. L. Anderson
M. Saunois
J. Schroeder
J.-H. Woo
I. J. Simpson
D. R. Blake
S. Meinardi
P. O. Wennberg
J. Crounse
A. Teng
M. Kim
R. R. Dickerson
R. R. Dickerson
H. He
H. He
X. Ren
X. Ren
S. E. Pusede
G. S. Diskin
author_sort B. Gaubert
title Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
title_short Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
title_full Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
title_fullStr Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
title_full_unstemmed Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
title_sort correcting model biases of co in east asia: impact on oxidant distributions during korus-aq
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-12-01
description <p>Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea–United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model<span id="page14618"/> with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42&thinsp;% in the control run and by 12&thinsp;% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80&thinsp;% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O<span class="inline-formula"><sub>3</sub></span> datasets and observationally constrained box model simulations of OH and HO<span class="inline-formula"><sub>2</sub></span>. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29&thinsp;% for CO, 18&thinsp;% for ozone, 11&thinsp;% for HO<span class="inline-formula"><sub>2</sub></span>, and 27&thinsp;% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O<span class="inline-formula"><sub>3</sub></span>, with an average underestimation of 5.5&thinsp;ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO<span class="inline-formula"><sub><i>x</i></sub></span> controls, can improve ozone pollution over East Asia.</p>
url https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf
work_keys_str_mv AT bgaubert correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT lkemmons correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT kraeder correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT stilmes correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT kmiyazaki correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT afarellanojr correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT nelguindi correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT cgranier correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT cgranier correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT wtang correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT jbarre correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT hmworden correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT rrbuchholz correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT dpedwards correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT pfranke correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT jlanderson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT msaunois correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT jschroeder correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT jhwoo correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT ijsimpson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT drblake correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT smeinardi correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT powennberg correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT jcrounse correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT ateng correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT mkim correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT rrdickerson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT rrdickerson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT hhe correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT hhe correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT xren correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT xren correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT sepusede correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
AT gsdiskin correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq
_version_ 1724397854283268096
spelling doaj-8ffc0c8366fd4e27a456d9f234799f0a2020-12-07T07:51:57ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-12-0120146171464710.5194/acp-20-14617-2020Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQB. Gaubert0L. K. Emmons1K. Raeder2S. Tilmes3K. Miyazaki4A. F. Arellano Jr.5N. Elguindi6C. Granier7C. Granier8W. Tang9J. Barré10H. M. Worden11R. R. Buchholz12D. P. Edwards13P. Franke14J. L. Anderson15M. Saunois16J. Schroeder17J.-H. Woo18I. J. Simpson19D. R. Blake20S. Meinardi21P. O. Wennberg22J. Crounse23A. Teng24M. Kim25R. R. Dickerson26R. R. Dickerson27H. He28H. He29X. Ren30X. Ren31S. E. Pusede32G. S. Diskin33Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAComputational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USADept. of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USALaboratoire d'Aérologie, CNRS, Université de Toulouse, Toulouse, FranceLaboratoire d'Aérologie, CNRS, Université de Toulouse, Toulouse, FranceNOAA Chemical Sciences Laboratory-CIRES/University of Colorado, Boulder, CO, USAAdvanced Study Program, National Center for Atmospheric Research, Boulder, CO, USAEuropean Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UKAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAForschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung IEK-8, 52425 Jülich, GermanyComputational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceCalifornia Air Resources Board, Sacramento, CA, USADepartment of Advanced Technology Fusion, Konkuk University, Seoul, South KoreaDepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAAir Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USADepartment of Environmental Sciences, University of Virginia, Charlottesville, VA, USANASA Langley Research Center, Hampton, VA, USA<p>Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea–United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model<span id="page14618"/> with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42&thinsp;% in the control run and by 12&thinsp;% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80&thinsp;% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O<span class="inline-formula"><sub>3</sub></span> datasets and observationally constrained box model simulations of OH and HO<span class="inline-formula"><sub>2</sub></span>. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29&thinsp;% for CO, 18&thinsp;% for ozone, 11&thinsp;% for HO<span class="inline-formula"><sub>2</sub></span>, and 27&thinsp;% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O<span class="inline-formula"><sub>3</sub></span>, with an average underestimation of 5.5&thinsp;ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO<span class="inline-formula"><sub><i>x</i></sub></span> controls, can improve ozone pollution over East Asia.</p>https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf