Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
<p>Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic a...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf |
id |
doaj-8ffc0c8366fd4e27a456d9f234799f0a |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. Gaubert L. K. Emmons K. Raeder S. Tilmes K. Miyazaki A. F. Arellano Jr. N. Elguindi C. Granier C. Granier W. Tang J. Barré H. M. Worden R. R. Buchholz D. P. Edwards P. Franke J. L. Anderson M. Saunois J. Schroeder J.-H. Woo I. J. Simpson D. R. Blake S. Meinardi P. O. Wennberg J. Crounse A. Teng M. Kim R. R. Dickerson R. R. Dickerson H. He H. He X. Ren X. Ren S. E. Pusede G. S. Diskin |
spellingShingle |
B. Gaubert L. K. Emmons K. Raeder S. Tilmes K. Miyazaki A. F. Arellano Jr. N. Elguindi C. Granier C. Granier W. Tang J. Barré H. M. Worden R. R. Buchholz D. P. Edwards P. Franke J. L. Anderson M. Saunois J. Schroeder J.-H. Woo I. J. Simpson D. R. Blake S. Meinardi P. O. Wennberg J. Crounse A. Teng M. Kim R. R. Dickerson R. R. Dickerson H. He H. He X. Ren X. Ren S. E. Pusede G. S. Diskin Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ Atmospheric Chemistry and Physics |
author_facet |
B. Gaubert L. K. Emmons K. Raeder S. Tilmes K. Miyazaki A. F. Arellano Jr. N. Elguindi C. Granier C. Granier W. Tang J. Barré H. M. Worden R. R. Buchholz D. P. Edwards P. Franke J. L. Anderson M. Saunois J. Schroeder J.-H. Woo I. J. Simpson D. R. Blake S. Meinardi P. O. Wennberg J. Crounse A. Teng M. Kim R. R. Dickerson R. R. Dickerson H. He H. He X. Ren X. Ren S. E. Pusede G. S. Diskin |
author_sort |
B. Gaubert |
title |
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ |
title_short |
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ |
title_full |
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ |
title_fullStr |
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ |
title_full_unstemmed |
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ |
title_sort |
correcting model biases of co in east asia: impact on oxidant distributions during korus-aq |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2020-12-01 |
description |
<p>Global coupled chemistry–climate models underestimate carbon
monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative
bias against measurements peaking in late winter and early spring. While
this bias has been commonly attributed to underestimation of direct
anthropogenic and biomass burning emissions, chemical production and loss
via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an
important role. Here we investigate the reasons for this underestimation
using aircraft measurements taken in May and June 2016 from the Korea–United States Air Quality (KORUS-AQ) experiment in South Korea and the Air
Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For
reference, multispectral CO retrievals (V8J) from the Measurements of
Pollution in the Troposphere (MOPITT) are jointly assimilated with
meteorological observations using an ensemble adjustment Kalman filter
(EAKF) within the global Community Atmosphere Model<span id="page14618"/> with Chemistry
(CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42 % in the control run and by 12 % with the MOPITT assimilation run. The inversion suggests an
underestimation of anthropogenic CO sources in many regions, by up to 80 % for northern China, with large increments over the Liaoning Province
and the North China Plain (NCP). Yet, an often-overlooked aspect of these
inversions is that correcting the underestimation in anthropogenic CO
emissions also improves the comparison with observational O<span class="inline-formula"><sub>3</sub></span> datasets
and observationally constrained box model simulations of OH and HO<span class="inline-formula"><sub>2</sub></span>.
Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29 % for CO, 18 % for ozone, 11 % for HO<span class="inline-formula"><sub>2</sub></span>, and 27 % for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O<span class="inline-formula"><sub>3</sub></span>, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by
separately increasing by a factor of 2 the modeled biogenic emissions for
the plant functional types found in Korea. Results also suggest that
controlling VOC and CO emissions, in addition to widespread NO<span class="inline-formula"><sub><i>x</i></sub></span> controls,
can improve ozone pollution over East Asia.</p> |
url |
https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf |
work_keys_str_mv |
AT bgaubert correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT lkemmons correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT kraeder correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT stilmes correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT kmiyazaki correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT afarellanojr correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT nelguindi correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT cgranier correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT cgranier correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT wtang correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT jbarre correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT hmworden correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT rrbuchholz correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT dpedwards correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT pfranke correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT jlanderson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT msaunois correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT jschroeder correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT jhwoo correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT ijsimpson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT drblake correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT smeinardi correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT powennberg correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT jcrounse correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT ateng correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT mkim correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT rrdickerson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT rrdickerson correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT hhe correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT hhe correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT xren correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT xren correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT sepusede correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq AT gsdiskin correctingmodelbiasesofcoineastasiaimpactonoxidantdistributionsduringkorusaq |
_version_ |
1724397854283268096 |
spelling |
doaj-8ffc0c8366fd4e27a456d9f234799f0a2020-12-07T07:51:57ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-12-0120146171464710.5194/acp-20-14617-2020Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQB. Gaubert0L. K. Emmons1K. Raeder2S. Tilmes3K. Miyazaki4A. F. Arellano Jr.5N. Elguindi6C. Granier7C. Granier8W. Tang9J. Barré10H. M. Worden11R. R. Buchholz12D. P. Edwards13P. Franke14J. L. Anderson15M. Saunois16J. Schroeder17J.-H. Woo18I. J. Simpson19D. R. Blake20S. Meinardi21P. O. Wennberg22J. Crounse23A. Teng24M. Kim25R. R. Dickerson26R. R. Dickerson27H. He28H. He29X. Ren30X. Ren31S. E. Pusede32G. S. Diskin33Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAComputational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USADept. of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USALaboratoire d'Aérologie, CNRS, Université de Toulouse, Toulouse, FranceLaboratoire d'Aérologie, CNRS, Université de Toulouse, Toulouse, FranceNOAA Chemical Sciences Laboratory-CIRES/University of Colorado, Boulder, CO, USAAdvanced Study Program, National Center for Atmospheric Research, Boulder, CO, USAEuropean Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UKAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAForschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung IEK-8, 52425 Jülich, GermanyComputational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceCalifornia Air Resources Board, Sacramento, CA, USADepartment of Advanced Technology Fusion, Konkuk University, Seoul, South KoreaDepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USACalifornia Institute of Technology, Pasadena, CA, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USADepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USAAir Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USADepartment of Environmental Sciences, University of Virginia, Charlottesville, VA, USANASA Langley Research Center, Hampton, VA, USA<p>Global coupled chemistry–climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea–United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model<span id="page14618"/> with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42 % in the control run and by 12 % with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80 % for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O<span class="inline-formula"><sub>3</sub></span> datasets and observationally constrained box model simulations of OH and HO<span class="inline-formula"><sub>2</sub></span>. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29 % for CO, 18 % for ozone, 11 % for HO<span class="inline-formula"><sub>2</sub></span>, and 27 % for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O<span class="inline-formula"><sub>3</sub></span>, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO<span class="inline-formula"><sub><i>x</i></sub></span> controls, can improve ozone pollution over East Asia.</p>https://acp.copernicus.org/articles/20/14617/2020/acp-20-14617-2020.pdf |