Analysis of Single Channel Blind Source Separation Algorithm for Chaotic Signals

In a wireless sensor network, the signal received by the terminal processor is usually a complex single channel hybrid chaotic signal. The engineering needs to separate the useful signal from the mixed signal to perform the next transmission analysis. Since chaotic signals are nonlinear and unpredic...

Full description

Bibliographic Details
Main Authors: Jiai He, Yuxiao Song, Panpan Du, Lei Xu
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/9571510
Description
Summary:In a wireless sensor network, the signal received by the terminal processor is usually a complex single channel hybrid chaotic signal. The engineering needs to separate the useful signal from the mixed signal to perform the next transmission analysis. Since chaotic signals are nonlinear and unpredictable, traditional blind separation algorithms cannot effectively separate chaotic signals. Aiming to correct these problems—based on the particle filter estimation algorithm—an extended Kalman particle filter algorithm (EPF) and an unscented Kalman particle filter algorithm (UPF) are proposed to solve the single channel blind separation problem of chaotic signals. Mixing chaotic signals of different intensities performs blind source separation. Using different evaluation indexes carries out the experiment and performance can be analyzed. The results show that the proposed algorithm effectively separates the mixed chaotic signals.
ISSN:1024-123X
1563-5147